参考文献/References:
[1]马境远,刘鲲,傅慧源. 一种融合多模态特征的视频暴力检测方法[J]. 重庆邮电大学学报(自然科学版),2021,33:861.
[2]蔡哲栋,应娜,郭春生,等. YOLOv3剪枝模型的多人姿态估计[J]. 中国图像图形学报,2021,26(4):837-846.
[3]XIA R J,LI Y S,LUO W H. LAGA-Net:local-and-global attention network for skeleton based action recognition[J]. IEEE transactions on multimedia,2022,24:2648-2661.
[4]YANG H Y,GU Y Z,ZHU J C,et al. PGCNTCA:pseudo graph convolutional network with temporal and channel-wise attention for skeleton-based action recognition[J]. IEEE access,2020,8:10040-10047.
[5]SULTANI W,CHEN C,SHAH M,et al. Real-world anomaly detection in surveillance videos[C]//Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6479-6488.
[6]PENG W,SHI J G,ZHAO G Y. Spatial temporal graph deconvolutional network for skeleton-based human action recognition[J]. IEEE signal processing letters,2021,28:244-248.
[7]YU W,YANG K,YAO H,et al. Exploiting the complementary strengths of multi-layer CNN features for image retrieval[J]. Neurocomputing,2017,237:235-241.
[8]LIU J,SHAHROUDY A,WANG G,et al. Skeleton based online action prediction using scale selection network[J]. IEEE transactions on pattern analysis and machine intelligence,2020,42(6):1453-1467.
[9]PENG W,SHI J,VARANKA T,et al. Rethinking the ST-GCNs for 3D skeleton-based human action recognition[J]. Neurocomputing,2021,454:45-53.
[10]ZHANG S Y,YANG Y,JUN X,et al. Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks[J]. IEEE transactions on multimedia,2018,20(9):2230-2343.
[11]王佳铖,鲍劲松,刘天元等. 基于工件注意力的车间作业行为在线识别方法[J]. 计算机集成制造系统,2021,27(4):1099-1107.
[12]苏江毅,宋晓宁,吴小俊,等. 多模态轻量级图卷积人体骨架行为识别方法[J]. 计算机科学与探索,2021,15(4):733-742.
[13]JI S,XU W,YANG M,et al. 3D convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence,2012,35(1):221-231.
[14]黄海新,王瑞鹏,刘孝阳. 基于3D 卷积的人体行为识别技术综述[J]. 计算机科学,2020,47(S2):139-144.
[15]ZHANG B,WANG Y,HOU W,et al. Flexmatch:boosting semi-supervised learning with curriculum pseudo labeling[J]. Advances in neural information processing systems,2021,34:18408-18419.
[16]CHEN P,GAO Y,MA A J. Multi-level attentive adversarial learning with temporal dilation for unsupervised video domain adaptation[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway,NJ:IEEE Press,2022:1259-1268.
[17]TOSHEV A,SZEGEDY C. DeepPose:human pose estimation via deep neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014:1653-1660.
[18]LIN G,LI Q,LI M,et al. A novel bottleneck-activated feedback neural network model for time series prediction[J]. IEEE transactions on neural networks and learning systems,2021,32(4):1621-1635.
[19]ABDEL-BASSET M,HAWASHH,CHAKRABORTTYR K,et al. ST-DeepHAR:deep learning model for human activity recognition in loHT applications[J]. SENSORS,2021,8(6):4969-4979.
[20]HE K M,ZHANG X Y,REN S Q,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision. Santiago:IEEE,2016:1026-1034.
[21]WEI S E,RAMAKRISHNA V,KANADE T,et al. Convolutional pose machines[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:4724-4732.
[22]陈斌,朱晋宁,东一舟. 基于残差整流增强卷积神经网络的表情识别[J]. 液晶与显示,2020,35(12):1299-1308.
[23]KOCABAS M,KARAGOZ S,AKBAS E. MultiPoseNet:fast multi-person pose estimation using pose residual network[C]//Proceedings of the 15th European Conference on Computer Vision. Munich:Springer,2018:417-433.
[24]秦晓飞,郭海洋,陈浩胜,等. 基于深度残差网络的多人姿态估计[J]. 光学仪器,2021,43(2):39-47.
[25]HU J,SHEN L,SUN G. Squeeze-adn-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018:7132-7141.
[26]CAO Z,GINES H,SIMON T,et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington,D. C.,USA:IEEE Press,2017:7291-7299.
[27]KREISS S,BERTONI L,ALAHI A. PifPaf:composite fields for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,CA:IEEE,2019:11969-11978.
[28]CHENG B,XIAO B,WANG J,et al. HigherHRNet:scale-aware representation learning for bottom-up human pose estimation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA:IEEE,2020:5385-5394.
[29]HE K M,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[J]. IEEE transactions on pattern analysis and machine intelligence,2020,42(2):386-397.
[30]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Computer Vision & Pattern Recognition. Las Vegas,NV,USA:IEEE,2016,1(2):779-788.
[31]WANG X,SHRIVASTAVA A,GUPTA A. A-fastrcnn:hard positive generation via adversary for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii,USA:IEEE,2017:2606-2615.
[32]PISHCHULIN L,INSAFUTDINOV E,TANG S,et al. Deepcut:joint subset partition and labeling for multi person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV:IEEE,2016:4929-4937.
[33]CHEN Y,WANG Z,PENG Y,et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lakecity:IEEE,2018:7103-7112.
[34]NEWELL A,YANG K Y,DENG J. Stacked hourglass networks for human pose estimationproceedings of the european[C]//Conference on Computer Vision.Berlin,Germany:Springer,2016:483-499.
[35]FANG H S,XIE S,TAI Y W,et al. RMPE:regional multi-person pose estimation[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice,Italy:IEEE,2017:2353-2362.
[36]LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[C]//European Conference on Computer Vision. Zurich:Springer,2014,8693:740-755.
[37]成科扬,吴金霞,王文杉,等. 融合时空图卷积的多人交互行为识别[J]. 中国图像图形学报,2021,26(7):1681-1691.