[1]罗 啸,尚永志,刘 巍,等.基于电场作用下水蒸发速率影响特性的研究[J].南京师大学报(自然科学版),2025,48(01):1-5148.[doi:10.3969/j.issn.1001-4616.2025.01.001]
 Luo Xiao,Shang Yongzhi,Liu Wei,et al.Research on the Influence of Water Evaporation Rate Under the Action of Electric Field[J].Journal of Nanjing Normal University(Natural Science Edition),2025,48(01):1-5148.[doi:10.3969/j.issn.1001-4616.2025.01.001]
点击复制

基于电场作用下水蒸发速率影响特性的研究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
48
期数:
2025年01期
页码:
1-5148
栏目:
特约稿
出版日期:
2025-02-15

文章信息/Info

Title:
Research on the Influence of Water Evaporation Rate Under the Action of Electric Field
文章编号:
1001-4616(2025)01-0001-05
作者:
罗 啸尚永志刘 巍卢 平刘晨晗
(南京师范大学能源与机械工程学院先进热管理技术与功能材料实验室,江苏 南京 210023)
Author(s):
Luo XiaoShang YongzhiLiu WeiLu PingLiu Chenhan
(Advanced Thermal Management Technology and Functional Materials Laboratory,School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
关键词:
水蒸发速率光分子效应梯度电场分子动力学
Keywords:
water evaporation ratephotomolecular effectgradient electric fieldmolecular dynamics
分类号:
TK121
DOI:
10.3969/j.issn.1001-4616.2025.01.001
文献标志码:
A
摘要:
光分子效应理论指出光子在液气蒸发界面处形成梯度电场,产生的电场力破坏水分子团簇间的氢键,促进水蒸发速率突破理论蒸发极限. 为了验证光分子效应,本文采用分子动力学方法研究外加梯度电场作用下水蒸发特性. 液气相平衡态模拟结果显示,温度越高液气混合蒸发区域的厚度越大. 自蒸发模拟表明蒸发速率随着温度的提升呈非线性变化,且当温度接近沸点时,蒸发速率增加得更快; 在电场作用下,水蒸发速率得到大幅提升,且随着温度的上升,梯度电场对水蒸发速率的提升效果明显削弱.
Abstract:
The theory of photomolecular effect states that photons form a gradient electric field at the liquid gas evaporation interface,and the generated electric field force breaks the hydrogen bonds between water molecule clusters,promoting the water evaporation rate to exceed the theoretical evaporation limit. In order to verify the photomolecular effect,this paper uses molecular dynamics methods to study the water evaporation characteristics under the action of an external gradient electric field. The simulation results of liquid gas equilibrium state show that the thickness of the evaporation zone in liquid gas mixture increases with temperature. Self evaporation simulation shows that the evaporation rate varies nonlinearly with the increase of temperature. When the temperature approaches the boiling point,the evaporation rate increases faster. Under the action of an electric field,the rate of water evaporation is significantly increased,and with the increase of temperature,the effect of gradient electric field on the rate of water evaporation is significantly weakened.

参考文献/References:

[1]TAO P,NI G,SONG C,et al. Solar-driven interfacial evaporation[J]. Nature energy,2018,3(12):1031-1041.
[2]TU Y,CHEN G. Photomolecular effect:visible light absorption at water-vapor interface[J/OL]. arXiv Preprint arXiv:2202.10646,2022.
[3]TU Y,ZHOU J,LIN S,et al. Photomolecular effect leading to water evaporation exceeding thermal limit[J/OL]. arXiv Preprint arXiv:2201.10385,2022.
[4]LEIMKUHLER B,MATTHEWS C. Molecular dynamics[J]. Interdisciplinary applied mathematics,2015,39:443.
[5]ERCOLESSI F. A molecular dynamics primer[R]. Spring college in computational physics. Trieste:ICTP,1997.
[6]YANG T,PAN C. Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient[J]. International journal of heat and mass transfer,2005,48(17):3516-3526.
[7]KOBAYASHI K,HORI K,KON M,et al. Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor-liquid equilibria[J]. Heat and mass transfer,2016,52:1851-1859.
[8]SKARBALIUS G,DIUGYS A,MISIULIS E,et al. Molecular dynamics study on water evaporation/condensation parameters[J]. Microfluidics and nanofluidics,2021,25(10):81.
[9]LI X,LI J,LU J,et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule,2018,2(7):1331-1338.
[10]ZHANG X,PENG Y,SHI L,et al. Highly efficient solar evaporator based on a hydrophobic association hydrogel[J]. ACS sustainable chemistry & engineering,2020,8(49):18114-18125.
[11]CHEN G. On the molecular picture and interfacial temperature discontinuity during evaporation and condensation[J]. International journal of heat and mass transfer,2022,191:122845.

备注/Memo

备注/Memo:
收稿日期:2024-10-08.
基金项目:国家自然科学基金项目(52206092)、江苏省科学技术厅双碳专项(BK20220032).
通讯作者:刘晨晗,博士,教授,研究方向:微尺度传热. E-mail:chenhanliu@njnu.edu.cn
更新日期/Last Update: 2025-02-15