参考文献/References:
[1]GOODFELLOW I,BENGIO Y,COURVILLE A,et al. Deep Learning[M]. Cambridge,UK:MIT Press,2016.
[2]RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,Munich,Germany:Springer,2015:234-241.
[3]LI B,LIU S K,WU F,et al. RT-Unet:an advanced network based on residual network and transformer for medical image segmentation[J]. International journal of intelligent systems,2022,37(11):8565-8582.
[4]ZHOU Z W,SIDDIQUEE M M R,TAJBAKHSH N,et al. UNet++:a nested U-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Granada,Spain:Springer International Publishing,2018:3-11.
[5]MILLETARI F,NAVAB N,AHMADI S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 Fourth International Conference on 3D Vision(3DV),Stanford,CA:IEEE,2016:565-571.
[6]ISENSEE F,PETERSEN J,KLEIN A,et al. NNU-Net:self-adapting framework for U-Net-based medical image segmentation[J/OL]. arXiv Preprint arXiv:1809.10486,2018.
[7]VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[J]. Advances in neural information processing systems,2017:5998-6008.
[8]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al. An image is worth 16×16 words:transformers for image recognition at scale[J/OL]. arXiv Preprint arXiv:2010.11929,2020.
[9]LIU Z,LIN Y,CAO Y,et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal,QC,Canada:IEEE,2021:10012-10022.
[10]LIU Z,MAO H,WU C Y,et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans,LA:IEEE 2022:11976-11986.
[11]ROY S,KOEHLER G,ULRICH C,et al. Mednext:transformer-driven scaling of convnets for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Vancouver,Canada:Springer,2023:405-415.
[12]XIAO X,LIAN S,LUO Z,et al. Weighted res-unet for high-quality retina vessel segmentation[C]//International Conference on Information Technology in Medicine and Education(ITME). Hangzhou,China:IEEE,2018:327-331.
[13]OKTAY O,SCHLEMPER J,FOLGOC L L,et al. Attention U-Net:learning where to look for the pancreas[C]//Proceedings of the 21th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI). Granada,Spain:Springer International Publishing,2018:564-572.
[14]蒋婷,李晓宁.采用多尺度视觉注意力分割腹部CT和心脏MR图像[J]. 中国图像图形学报,2024,29(1):268-279.
[15]HATAMIZADEH A,TANG Y,NATH V,et al. Unetr:transformers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa,HI:IEEE,2022:574-584.
[16]CHEN J,LU Y,YU Q,et al. Transunet:transformers make strong encoders for medical image segmentation[J/OL]. arXiv Preprint arXiv:2102.04306,2021.
[17]ZHANG Z,FU H,DAI H,et al. Et-net:a generic edge-attention guidance network for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019:22nd International Conference,Shenzhen,China:Springer International Publishing,2019:442-450.
[18]YANG J,JIAO L,SHANG R,et al. Ept-net:edge perception transformer for 3d medical image segmentation[J]. IEEE transactions on mmedical imaging,2023,42(11):3229-3243.
[19]VALANARAS J M J,SINDAGI V A,HACIHALILOGL I,et al. Kiu-net:overcomplete convolutional architectures for biomedical image and volumetric segmentation[J]. IEEE transactions on medical imaging,2021,41(4):965-976.
[20]LEE H J,KIM J U,LEE S,et al. Structure boundary preserving segmentation for medical image with ambiguous boundary[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,USA:IEEE,2020:4817-4826.
[21]MANZAR O N,KALEYBAR J M,SAADAT H,et al. BEFUnet:a hybrid CNN-Transformer architecture for precise medical image segmentation[J/OL]. arXiv Preprint arXiv:2402.08793,2024.
[22]RADFORD A,KIM J W,HALLACY C,et al. Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning. San Fracisco,CA,USA:PMLR,2021:8748-8763.
[23]KIRILLOV A,MINTUN E,RAVI N,et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris,France:IEEE,2023:4015-4026.
[24]YEUNG M,SALA E,SCHÖNLIEB C B,et al. Unified focal loss:generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation[J]. Computerized medical imaging and graphics,2022,95:102026.
[25]PANG Y,LIANG J,HUANG T,et al. Slim UNETR:scale hybrid transformers to efficient 3D medical image segmentation under limited computational resources[J]. IEEE transactions on medical imaging,2024,43(3):994-1005.