[1]赵新玥,陈美凤,张 静,等.基于双粒度的小麦问句分类模型研究[J].南京师大学报(自然科学版),2025,48(01):100-108.[doi:10.3969/j.issn.1001-4616.2025.01.013]
 Zhao Xinyue,Chen Meifeng,Zhang Jing,et al.Research on Wheat Question Classification Model Based on Dual-Granularity[J].Journal of Nanjing Normal University(Natural Science Edition),2025,48(01):100-108.[doi:10.3969/j.issn.1001-4616.2025.01.013]
点击复制

基于双粒度的小麦问句分类模型研究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
48
期数:
2025年01期
页码:
100-108
栏目:
计算机科学与技术
出版日期:
2025-02-15

文章信息/Info

Title:
Research on Wheat Question Classification Model Based on Dual-Granularity
文章编号:
1001-4616(2025)01-0100-09
作者:
赵新玥1陈美凤1张 静1王静茹1宋云胜12
(1.山东农业大学信息科学与工程学院,山东 泰安 271018)
(2.农业农村部黄淮海智慧农业技术重点实验室,山东 泰安 271018)
Author(s):
Zhao Xinyue1Chen Meifeng1Zhang Jing1Wang Jingru1Song Yunsheng12
(1.School of Information Science and Engineering,Shandong Agricultural University,Taian 271018,China)
(2.Huang Huaihai Key Laboratory of Intelligent Agriculture Technology Ministry of Agriculture and Rural Affairs,Taian 271018,China)
关键词:
小麦社区问答多尺度卷积注意力机制问句分类
Keywords:
wheat community Q&Amulti-scale CNNattention mechanismquestion classification
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2025.01.013
文献标志码:
A
摘要:
针对现阶段小麦问答社区的问句文本存在噪声、特征稀疏以及专业性强等问题,从词和字双粒度特征出发,提出了一种基于双粒度的小麦问句分类模型. 为有效缓解农业问句语义特征稀疏的问题,采用基于字粒度和词粒度的双分支架构,并引入交互注意力机制获取词粒度和字粒度交互特征信息以实现不同粒度信息表达文本语义的一致性,最后融合双粒度特征及其交互特征构建分类模型. 同时,在输入层添加农业字典和加载停用词表进行分词和分字,有效解决小麦社区问句文本专业性强和数据噪声问题. 与现有六种主流农业社区问句分类模型相比,该模型在整体分类性能上表现最优,且在各类别上综合性能优于其他模型. 本研究有助于提高小麦种植社区问答系统的性能,并积极推动智能农业推广进程、助力乡村振兴.
Abstract:
In response to the issues of noise,feature sparsity,and strong agricultural expertise in the question texts of the current wheat Q&A community,a wheat question classification model based on dual-granularity features is proposed. To effectively alleviate the problem of semantic feature sparsity in agricultural questions,a dual-branch architecture is employed,extracting both character-level and word-level features in separate branches. An interactive attention mechanism is introduced to capture the interaction between word-level and character-level features,ensuring the consistency of semantic representation across different granularities. Finally,the model integrates character-level,word-level,and their interactive features to construct a robust classification framework. Additionally,an agricultural dictionary and a stop words list are incorporated at the input layer to enhance word segmentation and character splitting,addressing the challenges of high domain specificity and data noise in wheat community question texts. Compared to six existing mainstream agricultural community question classification models,this model demonstrates superior overall classification performance and improved comprehensive performance across various categories. This research contributes to enhancing the performance of question-and-answer systems in wheat farming communities and actively promotes the advancement of smart agriculture,support rural revitalization efforts.

参考文献/References:

[1]赵凯. 小麦种植过程中的施肥技术应用要点[J]. 农家参谋,2022(19):34-36.
[2]韩家琪,毛克彪,夏浪,等. 基于空间数据仓库的农业大数据研究[J]. 中国农业科技导报,2016,18(5):17-24.
[3]刘合兵,张德梦,熊蜀峰,等. 融合 ALBERT 与规则的小麦病虫害命名实体识别[J]. 计算机科学与探索,2023,17(6):1395-1404.
[4]ARKIN E,YADIKAR N,XU X,et al. A survey:object detection methods from CNN to transformer[J]. Multimedia tools and applications,2023,82(14):21353-21383.
[5]ZHU J J,JIANG Q S,SHEN Y H,et al. Application of recurrent neural network to mechanical fault diagnosis:a review[J]. Journal of mechanical science and technology,2022,36(2):527-542.
[6]鲍彤,罗瑞,郭婷,等. 基于BERT字向量和TextCNN的农业问句分类模型分析[J]. 南方农业学报,2022,53(7):2068-2076.
[7]王郝日钦,王晓敏,缪祎晟,等. 基于BERT-Attention-DenseBiGRU的农业问答社区问句相似度匹配[J]. 农业机械学报,2022,53(1):244-252.
[8]唐詹,柏召,刁磊,等. 基于注意力池化和堆叠式结构的病虫害文献识别模型[J]. 农业机械学报,2021,52(S1):178-184.
[9]陈鹏,郭小燕. 基于Adaboost与朴素贝叶斯的农业短文本信息分类[J]. 软件,2020,41(9):13-18.
[10]李林,刁磊,唐詹,等. 基于BERT_Stacked LSTM的农业病虫害问句分类方法[J]. 农业机械学报,2021,52(S1):172-177.
[11]金宁,赵春江,吴华瑞,等. 基于BiGRU_MulCNN的农业问答问句分类技术研究[J]. 农业机械学报,2020,51(5):199-206.
[12]杨森淇,段旭良,肖展,等. 基于ERNIE+DPCNN+BiGRU的农业新闻文本分类[J]. 计算机应用,2023,43(5):1461-1466.
[13]ZHANG X W,WU P,CAI J M,et al. A contrastive study of Chinese text segmentation tools in marketing notification texts[C]//Journal of Physics:Conference Series. The United Kingdom:IOP Publishing,2019,1302(2):022010.
[14]CHURCH K W. Word2Vec[J]. Natural language engineering,2017,23(1):155-162.
[15]刘建伟,刘俊文,罗雄麟. 深度学习中注意力机制研究进展[J]. 工程科学学报,2021,43(11):1499-1511.
[16]JOULIN A,GRAVE E,BOJANOWSKI P,et al. Bag of tricks for efficient text classification[J/OL]. arXiv Preprint arXiv:1607.01759,2016.
[17]LIU P,QIU X,HUANG X. Recurrent neural network for text classification with multi-task learning[J/OL]. arXiv Preprint arXiv:1605.05101,2016.
[18]KIM Y. Convolutional neural networks for sentence classification[J/OL]. arXiv Preprint arXiv:1408.5882,2014.
[19]LAI S,XU L,LIU K,et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York:Association Computational Linguistics,2015,29(1):2267-2273.
[20]ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin,Germany:Association Computational Linguistics,2016,2:207-212.
[21]VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[J]. Advances in neural information processing systems,2017,30:1-11.
[22]朱郁筱,吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报,2012,41(2):163-175.

备注/Memo

备注/Memo:
收稿日期:2024-06-07.
基金项目:山东省自然科学基金面上项目(ZR2020MF146).
通讯作者:宋云胜,博士,讲师,研究方向:大规模机器学习,智能数据分析与处理,农业大数据. E-mail:sys_sd@126.com
更新日期/Last Update: 2025-02-15