参考文献/References:
[1]COÜASNON B,LEMAITRE A. Recognition of tables and forms[J]. Handbook of document image processing and recognition,2019:647-677.
[2]ZANIBBI R,BLOSTEIN D,CORDY J R. A survey of table recognition:models,observations,transformations,and inferences[J]. Document analysis and recognition,2004,7:1-16.
[3]E SILVA A C,JORGE A M,TORGO L. Design of an end-to-end method to extract information from tables[J]. International journal of document analysis and recognition(IJDAR),2006,8:144-171.
[4]KHUSRO S,LATIF A,ULLAH I. On methods and tools of table detection,extraction and annotation in PDF documents[J]. Journal of information science,2015,41(1):41-57.
[5]EMBLEY D W,HURST M,LOPRESTI D,et al. Table-processing paradigms:a research survey[J]. International journal of document analysis and recognition(IJDAR),2006,8:66-86.
[6]CESARINI F,MARINAI S,SARTI L,et al. Trainable table location in document images[C]//2002 International Conference on Pattern Recognition. Quebec,Canada:IEEE,2002,3:236-240.
[7]YANG X,YUMER E,ASENTE P,et al. Learning to extract semantic structure from documents using multimodal fully convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI,USA:IEEE,2017:5315-5324.
[8]HE D,COHEN S,PRICE B,et al. Multi-scale multi-task fcn for semantic page segmentation and table detection[C]//2017 14th IAPR International Conference on Document Analysis and Recognition(ICDAR). Kyoto,Japan:IEEE,2017,1:254-261.
[9]孙皓月. 基于深度学习的文档版面分析方法研究[D]. 福建:厦门理工学院,2022.
[10]张洪红. 基于注意力机制的文档图像版面分析算法[D]. 山东:青岛科技大学,2023.
[11]杨陈慧,周小亮,张恒,等. 基于Multi-WHFPN与SimAM注意力机制的版面分割[J]. 电子测量技术,2024,47(1):159-168.
[12]付苗苗,邓淼磊,张德贤. 基于深度学习和Transformer的目标检测算法[J]. 计算机工程与应用,2023,59(1):37-48.
[13]李沂杨,陆声链,王继杰,等. 基于Transformer的DETR目标检测算法研究综述[J]. 计算机工程,2025:1-20.
[14]李建,杜建强,朱彦陈,等. 基于Transformer的目标检测算法综述[J]. 计算机工程与应用,2023,59(10):48-64.
[15]ZOU Z,CHEN K,SHI Z,et al. Object detection in 20 years:a survey[J]. Proceedings of the IEEE,2023,111(3):257-276.
[16]ZITNICK C L,DOLLáR P. Edge boxes:locating object proposals from edges[C]//Computer Vision-ECCV 2014:13th European Conference. Zurich,Switzerland:Springer International Publishing,2014:391-405.
[17]HU Q,ZHAI L. RGB-D image multi-target detection method based on 3D DSF R-CNN[J]. International journal of pattern recognition and artificial intelligence,2019,33(8):1954026.
[18]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus,OH,USA:IEEE,2014:580-587.
[19]许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用,2021,57(8):10-25.
[20]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Vegas,NV,USA:IEEE,2016:779-788.
[21]LIU W,ANGUELOV D,ERHAN D,et al. Ssd:single shot multibox detector[C]//Computer Vision-ECCV 2016:14th European Conference. Amsterdam,The Netherlands:Springer International Publishing,2016:21-37.
[22]CARION N,MASSA F,SYNNAEVE G,et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham:Springer International Publishing,2020:213-229.
[23]李宗刚,宋秋凡,杜亚江,等. 基于改进DETR的机器人铆接缺陷检测方法研究[J]. 铁道科学与工程学报,2024,21(4):1690-1700.
[24]徐浩东. 基于DETR的自动驾驶汽车交通标志识别系统研究[D]. 陕西:西京学院,2022.
[25]崔颖,韩佳成,高山,等. 基于改进Deformable-DETR的水下图像目标检测方法[J]. 应用科技,2024,51(1):30-36,91.
[26]江志鹏,王自全,张永生,等. 基于改进Deformable DETR的无人机视频流车辆目标检测算法[J]. 计算机工程与科学,2024,46(1):91-101.
[27]武庭润,高建虎,常德宽,等. 基于Transformer的地震数据断层识别[J]. 石油地球物理勘探,2024,59(6):1217-1224.
[28]冯程,杨海,王淑娴,等. 基于自上而下掩码生成与层叠Transformer的多模态情感分析[J]. 计算机工程与应用,2025:1-11.
[29]MA N,ZHANG X,ZHENG H T,et al. Shufflenet v2:practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich,Germany:Springer,2018:116-131.
[30]LIN T Y,DOLLáR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI,USA:IEEE,2017:2117-2125.
[31]WANG Q,WU B,ZHU P,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,USA:IEEE,2020:11534-11542.