[1]曹 蕾,李 云,蒋永伟,等.废弃D001树脂衍生多孔炭材料及其在电容去离子脱盐中的应用[J].南京师大学报(自然科学版),2025,48(01):119-126.[doi:10.3969/j.issn.1001-4616.2025.01.015]
 Cao Lei,Li Yun,Jiang Yongwei,et al.Waste D001 Resin-Derived Porous Carbon Material and Its Application in Capacitive Deionization Desalination[J].Journal of Nanjing Normal University(Natural Science Edition),2025,48(01):119-126.[doi:10.3969/j.issn.1001-4616.2025.01.015]
点击复制

废弃D001树脂衍生多孔炭材料及其在电容去离子脱盐中的应用()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
48
期数:
2025年01期
页码:
119-126
栏目:
环境科学与工程
出版日期:
2025-02-15

文章信息/Info

Title:
Waste D001 Resin-Derived Porous Carbon Material and Its Application in Capacitive Deionization Desalination
文章编号:
1001-4616(2025)01-0119-08
作者:
曹 蕾1345李 云2蒋永伟1345甘 玲1345周田恬2张心怡2宋海欧2葛夏菁1345栗文明1345周君薇5
(1.江苏省环境工程技术有限公司,江苏 南京 210036)
(2.南京师范大学环境学院,江苏 南京 210023)
(3.江苏省工业园区规范化建设及智慧化管控工程研究中心,江苏 南京 210036)
(4.江苏省重点行业减污降碳协同控制工程研究中心,江苏 南京 210036)
(5.江苏省环保集团有限公司,江苏 南京 210036)
Author(s):
Cao Lei1345Li Yun2Jiang Yongwei1345Gan Ling1345Zhou Tiantian2Zhang Xinyi2Song Haiou2Ge Xiajing1345Li Wenming1345Zhou Junwei5
(1.Jiangsu Provincial Environmental Engineering Technology Co.,Ltd.,Nanjing 210036,China)
(2.School of Environment,Nanjing Normal University,Nanjing 210023,China)
(3.Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks,Nanjing 210036,China)
(4.Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries,Nanjing 210036,China)
(5.Jiangsu Provincial...
关键词:
电容去离子D001树脂衍生多孔炭脱盐
Keywords:
capacitive deionizationD001 resinderived porous carbondesalination
分类号:
TQ127.11
DOI:
10.3969/j.issn.1001-4616.2025.01.015
文献标志码:
A
摘要:
电容去离子技术(CDI)作为一种新型的电化学除盐技术,具有能耗低、环境友好、无二次污染等优点. 以D001树脂作为碳源,KOH作为活化剂,通过化学活化法制备D001树脂衍生多孔炭. 研究表明,活化温度对D001树脂衍生多孔炭的形貌结构、电化学和脱盐特性有显著影响. D001-800具有较大的比表面积(3 328.25 m2/g)、良好的分级结构,在100 mg/L的NaCl溶液及1.6 V的操作电压下,该电极的盐吸附量为11.08 mg·g-1. 这项研究为废弃D001树脂的资源化利用提供了路径.
Abstract:
Capacitive deionization(CDI)is a novel technology for the desalination of brackish water,which has the advantages of low energy consumption,environment-friendly and no secondary pollution. D001 resin-derived porous carbon was prepared by KOH activation using D001 resin as carbon precursor. The results showed that the activation temperature had a significant effect on the morphology,structure,electrochemical and desalination behavior of D001 resin-derived porous carbon. D001-800 possessed a large specific surface area(3 328.25 m2/g)and hierarchical pore structure. In the CDI tests,the highest electrosorption capacity of 11.08 mg·g-1 was achieved by D001-800 in a 100 mg/L NaCl solution at 1.6 V. This study can provide a path for the sustainable utilization of waste D001 resin.

参考文献/References:

[1]SCANLON B R,FAKHREDDINE S,RATEB A,et al. Global water resources and the role of groundwater in a resilient water future[J]. Nature reviews earth & environment,2023,4(2):87-101.
[2]KATTEL G R. State of future water regimes in the world's river basins:balancing the water between society and nature[J]. Critical reviews in environmental science and technology,2019,49(12):1107-1133.
[3]OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790):1068-1072.
[4]EKE J,YUSUF A,GIWA A,et al. The global status of desalination:an assessment of current desalination technologies,plants and capacity[J]. Desalination,2020,495:114633.
[5]IHSANULLAH I,ATIEH M A,SAJID M,et al. Desalination and environment:a critical analysis of impacts,mitigation strategies,and greener desalination technologies[J]. Science of the total environment,2021,780:146585.
[6]AHMED F E,KHALIL A,HILAL N. Emerging desalination technologies:current status,challenges and future trends[J]. Desalination,2021,517:115183.
[7]XING W,LIANG J,TANG W,et al. Versatile applications of capacitive deionization(CDI)-based technologies[J]. Desalination,2020,482:114390.
[8]ZHAO R,PORADA S,BIESHEUVEL P M,et al. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates,and comparison with reverse osmosis[J]. Desalination,2013,330:35-41.
[9]SUSS M E,PORADA S,SUN X,et al. Water desalination via capacitive deionization:what is it and what can we expect from it?[J]. Energy & environmental science,2015,8(8):2296-2319.
[10]PORADA S,ZHAO R,WAL A J V,et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in materials science,2013,58(8):1388-1442.
[11]OREN Y. Capacitive deionization(CDI)for desalination and water treatment:past,present and future(a review)[J]. Desalination,2008,228:10-29.
[12]WANG Y,ZHANG M,SHEN X,et al. Biomass-derived carbon materials:controllable preparation and versatile applications[J]. Small,2021,17(40):e2008079.
[13]PARVAZINIA M,GARCIA S,MAROTO-VALER M. CO2 capture by ion exchange resins as amine functionalised adsorbents[J]. Chemical engineering journal,2018,331:335-342.
[14]RENGARAJ S,JOO C K,KIM Y,et al. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins:1200H,1500H and IRN97H[J]. Journal of hazardous materials,2003,102(2):257-275.
[15]HAN S,ZANG Y,GAO Y,et al. Co-monomer polymer anion exchange resin for removing Cr(VI)contaminants:adsorption kinetics,mechanism and performance[J]. Science of the total environment,2020,709:136002.
[16]安丽花,张会涛,王德周,等. 不同离子交换树脂制备球形活性炭[J]. 山西化工,2023,43(6):12-14.
[17]史宸菲. 树脂基磁性活性炭的制备及其对水源水中典型污染物的去除研究[D]. 南京:南京大学,2014.
[18]HE P,HAW K G,YAN S,et al. Carbon beads with a well-defined pore structure derived from ion-exchange resin beads[J]. Journal of materials chemistry A,2019,7(31):18285-18294.
[19]SHI Q,LI A,ZHU Z,et al. Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin[J]. Journal of environmental sciences,2013,25(1):188-194.
[20]SILVA A P,ARGONDIZO A,JUCHEN P T,et al. Ultrafast capacitive deionization using rice husk activated carbon electrodes[J]. Separation and purification technology,2021,271:118872.
[21]WU J,WANG T,LIU Y,et al. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar[J]. Chemosphere,2022,302:135264.
[22]LILLO-RODENAS M A,CAZORLA-AMOROS D,LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH:an insight into the chemical activation mechanism[J]. Carbon,2003,41:267-275.
[23]ZHANG H,WANG C,ZHANG W,et al. Nitrogen,phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization[J]. Journal of materials chemistry A,2021,9(21):12807-12817.
[24]ZHANG P,LI J,CHAN-PARK M B. Hierarchical porous carbon for high-performance capacitive desalination of brackish water[J]. ACS sustainable chemistry & engineering,2020,8(25):9291-9300.
[25]WEI X,LI X,LV C,et al. Hierarchically yolk-shell porous carbon sphere as an electrode material for high-performance capacitive deionization[J]. Electrochimica acta,2020,354:136590.
[26]MOHAMED S K,ABUELHAMD M,ALLAM N K,et al. Eco-friendly facile synthesis of glucose-derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization[J]. Desalination,2020,477:114278.
[27]LI L,ZHANG L,XU Z,et al. Hierarchically porous carbons fabricated by dual pore-forming approach for the oxygen reduction reaction[J]. Carbon,2022,189:634-641.
[28]周宜蓓. 生物质纳米碳基材料的构建及电容性能研究[D]. 成都:四川师范大学,2019.
[29]许可. 利用秸秆制备多孔碳电极电化学吸附水中的盐离子[D]. 哈尔滨:黑龙江大学,2020.
[30]XIE K,YU J,ZHANG X,et al. Capacitive desalination of a low concentration aqueous sodium chloride solution based on a SnO2 and polystyrene co-functionalized graphene oxide electrodes[J]. Chemical engineering journal,2021,414:128747.
[31]JAIN A,GHOSH M,KRAJEWSKI M,et al. Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application[J]. Journal of energy storage,2021,34:102178.
[32]CUONG D V,WU P C,LIU N L,et al. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions[J]. Separation and purification technology,2020,242:116813.
[33]HUO S,NI W,SONG X,et al. Insight from the synergistic effect of dopant and defect interplay in carbons for high-performance capacitive deionization[J]. Separation and purification technology,2022,281:119807.
[34]HU X,MIN X,LI X,et al. Co@Co3O4 encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination:effects of nano-confinement and cobalt speciation[J]. Journal of colloid and interface science,2022,616:389-400.
[35]LI Y,QI J,LI J,et al. Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization[J]. ACS sustainable chemistry & engineering,2017,5(8):6635-6644.

相似文献/References:

[1]李 云,孙 婧,李洪祥,等.电容去离子用碳基电极材料性能提升策略[J].南京师大学报(自然科学版),2022,45(04):128.[doi:10.3969/j.issn.1001-4616.2022.04.017]
 Li Yun,Sun Jing,Li Hongxiang,et al.Strategies to Enhance Performance of Carbon-Based Electrode Material for Capacitive Deionization[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(01):128.[doi:10.3969/j.issn.1001-4616.2022.04.017]

备注/Memo

备注/Memo:
收稿日期:2023-10-16.
基金项目:江苏省重点研发社会发展面上项目(BE2021720)、江苏省环保集团科研项目(JSEP-TZ-2021-1001-RE).
通讯作者:宋海欧,博士,教授,博士生导师,研究方向:毒害污染物的去除与资源化. E-mail:songhaiou2011@126.com; 甘玲,硕士,研究方向:水中毒害污染物的去除. E-mail:ganlinggl@163.com
更新日期/Last Update: 2025-02-15