[1]李征,王双虎.一种基于变分的网格运动方法及其在边界层问题数值求解中的应用[J].南京师范大学学报(自然科学版),2007,30(02):15-21.
 Li Zheng,Wang Shuanghu.A Moving Mesh Method Based on Variational Problem for Boundary Layer Problem[J].Journal of Nanjing Normal University(Natural Science Edition),2007,30(02):15-21.
点击复制

一种基于变分的网格运动方法及其在边界层问题数值求解中的应用()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第30卷
期数:
2007年02期
页码:
15-21
栏目:
数学
出版日期:
2007-06-30

文章信息/Info

Title:
A Moving Mesh Method Based on Variational Problem for Boundary Layer Problem
作者:
李征;王双虎;
北京应用物理与计算数学研究所, 北京100088
Author(s):
Li ZhengWang Shuanghu
Institute of Applied Physics and Computational Mathematics,Beijing 100088,China
关键词:
运动网格 变分法 控制函数 欧拉—拉格朗日方程
Keywords:
m ov ing m esh var iationa lm ethod m on itor function Euler-Lag rang e equation
分类号:
O176
摘要:
从控制网格以适应解的性态并具有一定光滑性的朴素思想出发,建立了一种基于变分的网格运动方法,并给出了两种简单的数值求解方法.以两点边值问题及边界层问题为例,对这一网格运动方法进行了数值试验并得到了满意的数值结果,结果说明本方法成功地控制了网格的分布.
Abstract:
A new m ov ing m esh m e thod is g iven in this dissertation. Key idea of our m ethod is that the m esh shou ld adapt the so lutions cha racter and have som e sm oothness. The d istribution o f the nodes is go tten by a var ia tiona l problem, w hose Eu ler-Lagrange equation is the new mov ing m esh equation. Why and how to form the new m ethod is in troduced in de tails. Num er ica l results in two-po int boundary prob lem s and boundary layer problem s are v ery encourag ing and c lear ly to show that in m any cases them ethod can con tro l them esh m o tion

参考文献/References:

[ 1]  C de Boo r. Good approx im ation by splinesw ith var iable kno ts II[M ] / / Springer Lec tureNo tes Se ries 363. Be rlin: Springer-Verlag, 1973.
[ 2]  W h ite A B. On se lection of equ id istr ibuting m eshes for two-po int boundary-value prob lem s[ J]. SIAM Journal on Num erical Analysis, 1979, 16( 3): 472-502.
[ 3]  H uangW, Ren Y, Russe llR D. M ov ing m esh partia l d ifferentia l equations (MMPDEs) based on the equid istribution pr inciple[ J]. SIAM Journa l on Num erical Ana lysis, 1994, 31: 709-730.
[ 4]  M illerK, M ille rR N. M ov ing fin ite elem ent I[ J]. S IAM Journa l on Nume rica l Ana lys is, 1981, 18: 1019-1032.
[ 5]  M illerK. M ov ing fin ite e lement II[ J]. SIAM Journa l on Num erical Ana lysis, 1981, 18: 1 033-1 057.
[ 6]  Car lson N, M illerK. Design and applica tion o f a grad ient-w eighted mov ing finite code, Part I, 1- D[ J]. SIAM Journa l on Sc ientific Com puting, 1998, 19: 728-765.
[ 7]  Car lson N, M illerK. Design and application of a grad ient-w eigh ted m ov ing finite code, Pa rt II, 2- D[ J]. SIAM Journa l on Sc ientific Com puting, 1998, 19: 766-798.
[ 8]  M illerK. A geom etrical- m echan ica l inte rpo lation o f g rad ient-we ighted mov ing fin ite e lem en ts[ J]. SIAM Journa l on Num erica l Ana lys is, 1997, 34: 67-90.
[ 9]  CaoW, H uangW, RussellR D. A m ov ing m esh m ethod based on the geom etric conservation law[ J]. S IAM Journal on Scientific Com puting, 2002, 24( 1): 118-142.

备注/Memo

备注/Memo:
基金项目: 国家973 重点基础研究发展计划( 2005CB 32170X )资助项目.
作者简介: 李 征( 1979- ) , 女, 硕士, 主要从事计算数学方法的研究. E-m ail:li-zheng@ iapcm. ac. cn
通讯联系人: 王双虎( 1961- ) , 研究员, 主要从事计算数学的研究. E-m ail:wangshuanghu@ iapcm. ac. cn
更新日期/Last Update: 2013-05-05