[1]曹海涛,吴艳.区组大小为3的二重及三重单纯框架设计(英文)[J].南京师范大学学报(自然科学版),2008,31(01):15-20.
 Cao Haitao,Wu Yan.Simple Kirkman Frames With Index 2 and 3[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(01):15-20.
点击复制

区组大小为3的二重及三重单纯框架设计(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第31卷
期数:
2008年01期
页码:
15-20
栏目:
数学
出版日期:
2008-03-30

文章信息/Info

Title:
Simple Kirkman Frames With Index 2 and 3
作者:
曹海涛;吴艳;
南京师范大学数学与计算机科学学院, 数学研究所, 江苏南京210097
Author(s):
Cao HaitaoWu Yan
Institute of Mathematics,School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China
关键词:
单纯 框架设计 可分组设计
Keywords:
s imp le fram e d es ign group-d ivisib le d es ign
分类号:
O157.2
摘要:
一个(K,λ)框架设计是一个区组集可分为若干个带洞平行类的GDD(X,G,B),每一个带洞平行类为一个G\Gj的划分,Gj∈G.若所有的区组是不同的,则称框架设计是单纯的.单纯的框架设计对构造单纯的可分解填充设计有很重要的作用,后者可以用来构造统计学中的一致设计.本文将证明(3,λ)框架设计存在的必要条件也是充分的,其中λ=2,3.
Abstract:
A (K, λ)-fram e is a GDD ( X, G, B) in wh ich the co llection o f b lo cksB can be pa rtitioned into ho ley para lle l c lasses, each ho ley paralle l c lass be ing a pa rtition of G \Gj for som e Gj ∈ G. A fram e is called s imp le if a ll its b locks are distinc t. S imp le fram es are powe rfu l fo r the construc tion of sim ple K irkm an packing designs, w hich can be used in the construction of un iform designs in statistics. In this paper, we sha ll prove that the necessary conditions for simp le K irkm an fram es of type tu w ith index 2 and 3 are a lso sufficient

参考文献/References:

[ 1] Fang K, Ge G, LiuM, et a.l Com binato rial constructions for optim a l supersa turated designs[ J]. D iscre teM a th, 2004, 279 ( 1 /3): 191-202.
[ 2] Fang K, Lu X, Tang Y, et a.l Constructions o f un iform designs by us ing reso lv ab le packings and cover ing s[ J]. D iscrete M ath, 2004, 274( 1 /3) : 25-40.
[ 3] Stinson D R. Frames fo rK irkm an tr ip le system s[ J]. D iscre teM ath, 1987, 65( 3): 289-300.
[ 4] Shen H. Reso lvable two- fo ld trip le system s w ithout repeated b locks[ J]. Sc ience Bulle tin, 1988, 33: 1 855-1 857.
[ 5] Fur ino S F, M iao Y, Y in J X. Fram es and Resolvable Des igns: Uses, Constructions and Ex istence[M ]. BocaRa ton: CRC Press, 1996.
[ 6] Brouwe rA E. Optim al pack ing s ofK 4 s into aK n [ J]. J Com bin Theo ry SerA, 1979, 26( 3): 278-297.
[ 7] Brouwe rA E, H ananiH, Schrijver A. G roup div is ible designs w ith b lock-size four[ J]. D iscreteM a th, 1977, 20: 1-10.
[ 8] Co lbourn C J, D initz J H. CRC H andbook of Com binato rial Designs[M ]. Boca Raton: CRC Press, 1996.

备注/Memo

备注/Memo:
Foundation item: Supported by the NNSF( 10501023, 60673070) and NSF of J iangsu Province ( BK2006217 ) .
Biography: Cao H aitao, born in 1976, associate professor, m ajored in com b inatorics. E-m ail: caohaitao@ n jnu. edu. cn
更新日期/Last Update: 2013-05-05