[1]尚旭东,张吉慧.具有低阶项的非局部椭圆及抛物问题的正解(英文)[J].南京师范大学学报(自然科学版),2008,31(02):8-12.
 Shang Xudong,Zhang Jihui.Positive Solutions of Elliptic and Parabolic Problems With Nonlocal Lower Order Terms[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(02):8-12.
点击复制

具有低阶项的非局部椭圆及抛物问题的正解(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第31卷
期数:
2008年02期
页码:
8-12
栏目:
数学
出版日期:
2008-06-30

文章信息/Info

Title:
Positive Solutions of Elliptic and Parabolic Problems With Nonlocal Lower Order Terms
作者:
尚旭东;张吉慧;
南京师范大学数学与计算机科学学院, 江苏南京210097
Author(s):
Shang Xudong Zhang Jihui
School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China
关键词:
非局部问题 边值问题 正解 Galerkin方法
Keywords:
non loca l prob lem boundary v alue prob lem pos itive so lution Galerk in me thod
分类号:
O175.26
摘要:
考虑了非局部边值问题{-a(∫Ω|u|qdx)Δu+b(l(u))u=f(x,u), in Ω,u=0, on Ω,及其相应的非局部抛物问题的正解存在性.其中Ω是RN中的有界光滑区域,a和b是给定的函数.利用Galerkin方法,首先获得了具有低阶项的非局部椭圆问题正解的存在性,进一步证明了抛物问题正解的存在性.

参考文献/References:

[ 1] Corr a F J S A. On positiv e so lutions o f non loca l and nonvar ia tiona l e lliptic problem s[ J]. Non linear Ana,l 2004, 59( 7):1 147-1 155.
[ 2] M a T F. Rem arks on an elliptic equation of K irchho ff type[ J]. Non linear Ana,l 2005, 63( 5) : e( 1 967)- e( 1 977).
[ 3] Corr a F J S A, M enez S D B, Ferre ira J. On a c lass of prob lem s invo lv ing a non loca l ope rato r[ J]. App liedM ath Com,2004, 147( 2): 475-489.
[ 4] ChipotM. Som e rem arks on nonloca l e lliptic and parabo lic problem s[ J] . NonlinearAna,l 1997, 30( 4): 4 619-4 627.
[ 5] Sta zy R. Nonloca l e lliptic equa tions[ J]. Non linear Ana,l 2001, 47( 5) : 3 579-3 584.
[ 6] Corr a F J S A, Dan ielc deM o ra is F ilho. On a class o f non lo ca l elliptic prob lem s v ia Galerkin m ethod[ J]. JM ath Ana lAppl,2005, 310( 1): 177-187.
[ 7] Chang N H, Ch ipo tM. On som em odel d iffusion prob lem s w ith a nonlocal low er orde r te rm s[ J]. Ch in AnnM ath, 2003, 24B( 2): 147-166.
[ 8] Corr a F J S A, M enez S D B. Ex istence of so lu tion to nonloca l and singular ellip tic prob lem s v iaG alerk in m ethod[ J]. E lectron J D ifferenta l Equation, 2004, 19: 1-10.
[ 9] Abde rrahm ane, H achim ,iM ouldy Rch id S id iAmm .i Therm istor problem: A non loca l pa rabo lic problem [ J]. E lec J Differental Equations Conference, 2004, 11: 117-128.
[ 10] Delm ling K. Nonlinea r Functiona lAnalysis[M ]. Berlin: Spr inger-V erlag, 1985

相似文献/References:

[1]陈玉文,李建利.二阶脉冲边值问题解的存在性(英文)[J].南京师范大学学报(自然科学版),2007,30(04):28.
 Chen Yuwen,Li Jianli.Existences of Solutions for Second-Order Impulsive Differential Equations With Boundary Value Problems[J].Journal of Nanjing Normal University(Natural Science Edition),2007,30(02):28.

备注/Memo

备注/Memo:
Foundation item: Supported by Found at ion ofM ajor Project of Scien ce and T echnology ofCh in ese Educat ionM in istry( 2005101SB JBC51) , SRFDP of H igh er E ducation( 2005101TS JB157 ) .
Corresponding autho r: Zh ang J ihu,i professor, m ajored in virat ion alm ethod and PDE. E-m ail:jihu iz@ jlonl ine. com
更新日期/Last Update: 2013-05-05