[1]赵建清.一类拟线性微分方程爆破解的存在性(英文)[J].南京师范大学学报(自然科学版),2008,31(04):44-49.
 Zhao Jianqing.Existence of Explosive Solutions for a Class of Quasilinear Ordinary Differential Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(04):44-49.
点击复制

一类拟线性微分方程爆破解的存在性(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第31卷
期数:
2008年04期
页码:
44-49
栏目:
数学
出版日期:
2008-12-30

文章信息/Info

Title:
Existence of Explosive Solutions for a Class of Quasilinear Ordinary Differential Equations
作者:
赵建清12
( 1. 连云港师范高等专科学校数学系, 江苏连云港222000 )
( 2. 南京师范大学数学与计算机科学学院, 江苏南京210097 )
Author(s):
Zhao Jianqing12
1.Department of Mathematics,Lianyungang Teacher’s College,Lianyungang 222000,China
2. School ofMathem atics and Com puter S cien ce, Nan jing Norm alUn iversity, Nan jing 210097, Ch ina
关键词:
拟线性微分方程 非线性边值条件 Nagumo条件 爆破解
Keywords:
quasilinear ord inary d ifferentia l equa tion nonlinear boundary cond itions Nagum o condition exp lo sive solu tions
分类号:
O175
摘要:
通过积分的方法得到了一类带有边值条件的拟线性微分方程爆破解的存在性.
Abstract:
By the quadrature m ethod, an exp los ive so lu tion for a c lass o f quasilinear ord inary d iffe rentia l equations w ith boundary conditions a re obta ined.

参考文献/References:

[ 1] AnuradhaV, B rown C, Sh iva jiR. Explosive nonnegative so lutions to tw o po int boundary va lue prob lem [ J]. Nonlinea rAna,l1996, 26( 3): 613-630.
[ 2] W ang Shin Hw a. Ex istence and mu ltiplicity of boundary blow-up n inegative so lutions to two-po int boundary va lue prob lem s[ J] . NonlinearAna,l 2000, 42( 2): 139-162.
[ 3] D iaz G, Le telier R. Exp losive so lutions of quasilinear e lliptic equations, ex istence and un iqueness[ J]. Non linear Ana,l1993, 20( 3): 97-125.
[ 4] La zerA C, M cKenna P J. On a prob lem of B iebe rbach and Radem acher[ J]. Non linear Ana ly sis, 1993, 21( 5): 327-335
[ 5] La zer A C, M ckenna P J. On s ingu lar boundary va lue prob lem s for the M onge-Am pere Operator [ J]. JM ath Ana l App,l1996, 197( 2): 341-362.
[ 6] B ieberbach L. $u= eu und d ie autom orphen Funk tionen[ J]. M a th Ann ln, 1916( 77): 173-212.
[ 7] M arcusM, V eron L. Uniqueness o f so lutions w ith b iow-up a t the bounda ry fo r a c lass of nonlinear e lliptic equa tion[ J]. C RA cad Sc i Pa ris, 1993, 317: 559-563.
[ 8] Pohozaev S L. The D irich le t problem for the equa tion $u = u2 [ J]. Dok lAkad SSSR, 1960, 134: 769-772.
[ 9] PosteraroM R. On the so lutions o f the equa tion $u= eu blow ing up on the boundary[ J] . C R Acad Sc i Par is, 1996, 322:445-450.
[ 10] Radem ache rH. E inige besondere prob lem partie ller differentia l g le ichungen[M ] / / D ie D ifferen tia-l und Integra lg leichungende rM echanik und Physik .l 2nd ed. New Yo rk: Rosenberg, 1943: 838-845.
[ 11] Keller J B. On so lutions o f $u= f ( u ) [ J]. Commun Pure ApplM ath, 1957( 10): 503-510.
[ 12] Kondra t. ev V A, N ik ishken V A. A sym ptotics, near the boundary, o f a s ingu lar boundary-va lue prob lem fo r a sem ilineare lliptic equation[ J]. D iff Urav, 1990( 26): 465-468.
[ 13] Loew ne r C, N irenberg L. Partial d iffe rentia l equations invar iant under the confo rma l o r pro jective transfo rma tions[M ] . NewYork: A cadem ic Press, 1974: 245-272.
[ 14] Zhang Zh ijun. Ex istence of exp lo sive so lutions to two-po int bounda ry va lue prob lem s[ J]. App lied M athem atics Letters,2004( 17) : 1 033-1 037.
[ 15] YangH uisheng, Yang Zuodong. Ex istence o f exp losive nonnegative solutions for a c lass of quasilinea r ord inary d ifferential equations[J]. Journal o fN an jing Normal
Un iversity: N atural Sc ience Edition, 2004, 27( 2): 5-9.

备注/Memo

备注/Memo:
Corresponding autho r: Zh ao J ianq ing, associate p rofessor, m ajored in non lin ear differen tial equation. E-m ail: jianq ingzhao@ 126. com
更新日期/Last Update: 2013-05-05