[1]尉 琳,杨作东.一类拟线性椭圆型方程基态解的存在性[J].南京师范大学学报(自然科学版),2009,32(04):24-28.
 Wei Lin,Yang Zuodong.Existence of Ground State Solutions to a Quasilinear Elliptic Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2009,32(04):24-28.
点击复制

一类拟线性椭圆型方程基态解的存在性()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第32卷
期数:
2009年04期
页码:
24-28
栏目:
数学
出版日期:
2009-12-30

文章信息/Info

Title:
Existence of Ground State Solutions to a Quasilinear Elliptic Equations
作者:
尉 琳1 杨作东1 2
1. 南京师范大学数学科学学院, 江苏南京210046 
 2. 南京师范大学中北学院, 江苏南京210046
Author(s):
Wei Lin1Yang Zuodong12
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
关键词:
基态解 存在性 拟线性椭圆型方程
Keywords:
g round state so lution ex istence quasilinear e lliptic equation
分类号:
O175.6
摘要:
讨论了一类拟线性椭圆型方程-△pu=f(x,u)在RN中,其中f(x,u)是局部H lder连续函数.通过对f(x,u)建立适当的条件讨论了方程基态解的存在性,并且非线性项f(x,u)当u→0+时可能出现奇异.
Abstract:
This paper proves the ex istence o f a ground state solution for the quasilinear ellip tic equation - p u = f( x, u ) on RN under suitable conditions on a loca llyHlde r con tinuous non linear ity f ( x, u). The non- linearitym ay exh ib it a singu larity as u 0+ .

参考文献/References:

[ 1]  Astr ita G, M arrucc iG. Pr incip les of Non-N ew tonian Flu idM echanics[M ]. New Yo rk: M cGraw-H il,l 1974.
[ 2]  M artinson L K, Pav lov K B. Unsteady shear flow s o f a conducting flu id w ith a rheo log ical power law [ J]. M agnit G idrod-inam ika, 1971, 2: 50-58.
[ 3]  E steban J R, Vazquez J L. On the equa tion o f turbu lent filtration in one-d imensional po rous m edia[ J]. Nonlinear Ana,l1982, 10: 1 303-1 325.
[ 4]  Guo Z M. Ex istence and uniqueness o f the pos itive rad ia l so lu tions for a c lass of quasilinear e lliptic equations[ J]. App lAna ,l 1992, 47( 1): 173-190.
[ 5]  Guo ZM. Som e ex istence and m ultip lic ity resu lts for a class o f quasilinea r e lliptic equations[ J] . Nonlinea rAna ,l 1992, 18( 10): 957-971.
[ 6]  Guo Z M, W ebb JR L. Uniqueness of pos itive so lutions for quas ilinear elliptic equa tions when a param ete r is larg e[ J] . Pro c
R Soc Ed inburgh, 1994, 124A( 1): 189-198.
[ 7]  杨作东, 陆炳新. 一类拟线性椭圆型方程组爆破整体正对称解的存在性和解的结构[ J]. 南京师大学报: 自然科学版,2005, 28( 1) : 1-7.
[ 8]  周杰, 杨作东. 一类拟线性椭圆型方程正奇异解的能量估计[ J] . 南京师大学报: 自然科学版, 2006, 29( 1): 21-24.
[ 9]  Da lm asso R. So lutions d equations e lliptiques sem -i linear ies singulieres[ J]. AnnM at Pura App,l 1998, 153: 191-201.
[ 10]  D inu T L. Entire so lutions of sub linear e lliptic equations in an iso trop icm edia[ J]. JM a th Ana l App,l 2006, 322: 382-392.
[ 11]  Ede lson A L. Entire solutions o f singu lar elliptic equations[ J]. JM a th Ana l App,l 1989, 139: 523-532.
[ 12]  K E lM de lson. Entire bounded so lutions fo r a class o f sublinea r e lliptic equations[ J]. NonlinearAna ,l 2004, 58: 205-218.
[ 13]  FengW, L iu X. Ex istence o f entire so lutions of a singular sem ilinear e lliptic problem [ J]. Acta M ath S in ica, 2004, 20:
2 983-2 988.
[ 14] GherguM, R dulescu V D. Ground state so lu tions fo r the singu lar Lane-Emden-Fow ler equation w ith sub linea r conv ection term [ J]. JM a th Ana l App,l 2007, 333: 265-273.
[ 15]  Kusano T, Sw anson C A. Entire po sitive so lu tions of singu lar sem ilinea r e lliptic equa tions[ J]. Japan JM ath, 1985, 111:145-155.
[ 16]  La irA V, Shaker A W. Entire so lutions of singu lar sem ilinear e lliptic prob lem [ J] . JM a th Anal App,l 1996, 200: 498-505.
[ 17]  W u S, Y ang H. The ex istence theorem s for a c lass o f sub linear e lliptic equation in RN [ J]. ActaM ath Sin ica, 1997, 13:259-304.
[ 18]  Zhang Z. A rem ark on the ex istence o f entire so lu tions o f a singular sem ilinear e lliptic prob lem [ J]. JM ath Ana l App,l1997, 215: 579-582.
[ 19]  Zhang Z. A rem ark on the ex istence o f pos itive en tire so lutions of a sublinear ellip tic problem [ J]. Non linear Ana,l 2007,67: 147-153.
[ 20]  LazerA C, M ckenna P J. On a singular nonlinear ellip tic bounda ry-va lue problem [ J]. ProcAm erM ath Soc, 1991, 111:721-730.
[ 21]  Gu iG, Lin F H. Regular ity o f an elliptic problem w ith singu la r non linear ity [ J]. Proc Roy Soc Ediburgh, 1993, 123:1 021-1 029.
[ 22]  Dragos-Pa tru Cove .i Ex istence and asym pto tic behav ior o f positive so lu tion to a quasilinea r e lliptic problem in RN [ J]. NonlinearAna,l 2008, 69: 2 615-2 622.
[ 23]  M ohamm ed A. G round state so lutions for singu la r sem ilim ear elliptic equations[ J] . Non linear Ana,l 2009, 71: 1 276-1 280.
[ 24]  D iaz J I, Sa J E. Ex istence et un icite de so lutions positive pour certa ines equations elliptic quasilinearies[ J]. CRAS 305Serie, 1987, 1: 521-524.

相似文献/References:

[1]张艳芳,陈文彦.一类捕食模型正解的存在性和惟一性[J].南京师范大学学报(自然科学版),2010,33(02):26.
 Zhang Yanfang,Chen Wenyan.Existence and Uniqueness of Positive Solutions for a Predator-Prey Model[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):26.
[2]杨永琴,等.Banach空间中一类g-η-增生映象包含组的Ishikawa迭代算法(英文)[J].南京师范大学学报(自然科学版),2009,32(02):1.
 Yang Yongqin,Li Jianping,Zhang Hong.Ishikawa Iterative Algorithm for a System of g-η-Accretive Mapping Inclusions in Banach Spaces[J].Journal of Nanjing Normal University(Natural Science Edition),2009,32(04):1.
[3]杨会生,杨作东.一类拟线性常微分方程爆破解的存在性(英文)[J].南京师范大学学报(自然科学版),2004,27(02):5.
 Yang Huisheng~,Yang Zuodong~.Existence of Explosive Nonnegative Solutions for a Class of Quasilinear Ordinary Differential Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2004,27(04):5.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 10871060)、江苏省高校自然科学基金( 08KJB110005)资助项目.
通讯联系人: 杨作东, 教授, 博士生导师, 研究方向: 非线性微分方程. E-m ail: yangzuodong@ n jnu. edu. cn
更新日期/Last Update: 2013-04-23