[1]陆志奇,吕建锋.具有双周期时滞捕食被捕食模型的周期解[J].南京师范大学学报(自然科学版),2010,33(02):6-12.
 Lu Zhiqi,Lü Jianfeng.Periodic Solutions in Perdator-Prey Model With Two Delays[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(02):6-12.
点击复制

具有双周期时滞捕食被捕食模型的周期解()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年02期
页码:
6-12
栏目:
数学
出版日期:
2010-06-20

文章信息/Info

Title:
Periodic Solutions in Perdator-Prey Model With Two Delays
作者:
陆志奇;吕建锋;
河南师范大学数学与信息科学学院, 河南新乡453007
Author(s):
Lu ZhiqiLü Jianfeng
College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China
关键词:
周期时滞 H o llingⅡ 型 重合度 周期解
Keywords:
period ic de lay H o lling  co incidence degree theory per iodic so lution
分类号:
O175.13
摘要:
研究了一类双周期时滞和基于比率的HollingⅡ型功能性反应的三种群食物链系统,利用重合度理论建立了这类系统的正周期解存在的一个充分性判据.
Abstract:
A class of food cha in system w ith ratio- dependent Ho llingⅡ functiona l response and tw o per iodic de lay w as stud ied. Us ing the co inc idence degree theo ry, the ex istence o f periodic solutions for th is m ode lw as obtained unde r su i-t able cond itions.

参考文献/References:

[ 1] Tapan S. Dynam ica l ana lys is o f a de layed ratio-dependentH o lling-Tanner predato r-prey model[ J]. JM a th Ana lApp,l 2009, 358: 389-402.
[ 2] Ce lik C. The stability and H op f b ifurcation for a predato r-prey sy stem w ith tim e de lay [ J]. Chaos So litons and Fractals, 2008, 37( 1): 87-99.
[ 3] Ag izaH N, ELabbasy EM. Chaotic dynam ics of a discrete prey-preda torm odel w ith H olling type II[ J]. Nonlinear Ana,l 2009, 10( 1): 116-129.
[ 4] Robert S C, Chirs C, Ruan S G. Intraspec ific inter ference and consum er-resource dynam ics[ J]. Disc rete Contin Dynam Syst Ser, 2004, 4B( 3): 527-546.
[ 5] LiuW, X iao D, Y i Y. Relax ation oscillations in a c lass of predator prey system s[ J]. Differential Equations, 2003, 188 ( 1) : 306-331.
[ 6] Tao Z, Kuang Y, Sm ith H L. G loba l ex istence o f per iodic so lu tions in a c lass of de layed Gause-type pre-dator-prey sy stem s [ J]. NonlinearAnal TMA, 1997, 28( 8): 1 373-1 394.
[ 7] Xu R, Chen L, Chap la inM A J. Attractiv ity in a delayed three- spec ies ratio-dependent predator-prey sy stem w ithou t dom inating instantaneous nega tive feedback[ J]. ActaM athem aticae App licatae Sin ica, 2003, 19( 2) : 317-332.
[ 8] FanM, W ang K. Per iodic ity in a de layed ratio-dependent predator-prey system [ J]. JM a th Anal App,l 2001, 262: 179- 190.
[ 9] Ga ines R E, M awh in J L. Co inc idence Deg ree and NonlinearD ifferential Equations[M ]. Ber lin: Springer, 1977.

备注/Memo

备注/Memo:
基金项目: 河南省自然科学基金( 200510476002) . 通讯联系人: 陆志奇, 教授, 研究方向: 生物数学. E-mail:luzhiqi2001@ yahoo. com. cn
更新日期/Last Update: 2013-04-08