[1]黄萍,王琛玮,杨巨玲,等.P_1非协调四边形元解Stokes问题的多重网格算法[J].南京师范大学学报(自然科学版),2012,35(01):1-11.
 Huang Ping,Wang Chenwei,Yang Juling,et al.A Multigird Method of P1 Nonconforming Quadrilateral Finite Element for Solving Stokes Problem[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):1-11.
点击复制

P_1非协调四边形元解Stokes问题的多重网格算法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年01期
页码:
1-11
栏目:
数学
出版日期:
2012-03-20

文章信息/Info

Title:
A Multigird Method of P1 Nonconforming Quadrilateral Finite Element for Solving Stokes Problem
作者:
黄萍12王琛玮2杨巨玲2徐丹丹1
1. 中国人民解放军理工大学理学院,江苏南京211101) ( 2. 南京师范大学数学科学学院,江苏南京210046
Author(s):
Huang Ping12Wang Chenwei2Yang Juling2Xu Dandan1
1.Institute of Science,PLA University of Science and Technology,Nanjing 211101,China
关键词:
P1 非协调四边形元Stokes 问题多重网格算法稳定化方法
Keywords:
P1 nonconforming quadrilateral finite elementStokes problemmultigrid methodstabilized method
分类号:
O241.82
摘要:
研究了用P1-Q0元(其中P1表示P1非协调四边形元)解Stokes问题的多重网格算法.由于P1-Q0元不满足LBB条件,因此其不能直接用来求解Stokes问题.本文基于曾提出的一种P1-Q0元解Stokes问题的非协调混合有限元稳定化逼近方法,提出了W循环多重网格方法,证明了该方法的最优收敛性.最后给出的数值算例验证了该理论结果.
Abstract:
In this paper,we study the multigrid method of P1 - Q0 elements ( where P1 denotes P1 nonconforming quadrilateral finite element) for solving Stokes problem. Since P1 - Q0 elements violate the LBB condition,they can not be used for solving Stokes problem directly. Recently,we proposed a stabilized method of P1 - Q0 elements for solving Stokes problem. Based on this stabilized method,we propose a W - cycle multigrid method,and show the optimal convergence of W - cycle multigrid method with a sufficiently large number of smoothing steps. Finally,numerical experiments are presented to confirm our theoretical results.

参考文献/References:

[1] Park C. A study on locking phenomena in finite element methods[D]. Seoul: Department of Mathematics,Seoul National University, 2002.
[2] Park C,Sheen D. P1-nonconforming quadrilateral finite element methods for second-order elliptic problems[J]. SIAM J Numer Anal,2003,41: 624-640.
[3] Han H. Nonconforming elements in the mixed finite element method[J]. J Comp Math,1984,2: 223-233.
[4] Rannacher R,Turek S. Simple nonconforming quadrilateral Stokes element[J]. Numer Methods Partial Differential Equations, 1992,8: 97-111.
[5] Douglas J,J R Santos J E,Sheen D,et al. Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems[J]. RAIRO Math Model Numer Anal,1999,33: 747-770.
[6] Arnold D N,Boffi D,Falk R S. Approximation by quadrilateral finite elements[J]. Math Comp,2002,71: 909-922.
[7] Grajewski M,Hron J,Turek S. Numerical analysis for a new nonconforming linear finite element on quadrilaterals[J]. J Comp Appl Math,2006,193: 38-50.[8] 黄萍,陈金如. 解Stokes 问题的P1 非协调四边形元的稳定化方法[J]. 计算数学,2010,32( 1) : 81-96.
[9] Man H,Shi Z. P1 nonconforming quadrilateral finite volume element method and its cascadic multigrid algorithm for elliptic probloms[J]. J Comput Math,2006,24: 59-80.
[10] Girault V,Raviart P A. Finite Element Methods for Navier-Stokes Equations[M]. New York: Springer-Verlag,1986.
[11] 王锋,陈金如. 带间断系数椭圆问题的P1 非协调四边形元的加性Schwarz 方法[J]. 计算数学,2009,31( 2) : 209- 224.
[12] Brenner S C. A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity[J]. SIAM J Numer Anal,1993,33: 116-135.[13] 王烈衡,许学军. 有限元方法的数学基础[M]. 北京: 科学出版社,2004.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金( 10871100) .通讯联系人:黄萍,讲师,研究方向: 偏微分方程数值解. E-mail: pinghuang1984@163. com
更新日期/Last Update: 2013-03-11