[1]方锦暄,李晗.次范整线性空间上的可加奇性算子空间[J].南京师范大学学报(自然科学版),2012,35(02):1-7.
 Fang Jinxuan,Li Han.Spaces of Additive Odd Operators on Sub-Normed Z-Spaces[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(02):1-7.
点击复制

次范整线性空间上的可加奇性算子空间()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年02期
页码:
1-7
栏目:
数学
出版日期:
2012-06-20

文章信息/Info

Title:
Spaces of Additive Odd Operators on Sub-Normed Z-Spaces
作者:
方锦暄1李晗12
( 1. 南京师范大学数学科学学院,江苏南京210046) ( 2. 解放军信息工程大学理学院,河南郑州450001)
Author(s):
Fang Jinxuan1Li Han12
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
关键词:
次范整线性空间可加奇性算子空间完备性
Keywords:
sub-nomed integral-linear spacesspaces of additive odd operatorscompleteness
分类号:
O177
摘要:
利用次范整线性空间上可加奇性算子的3种不同的次范数和拟次范数,研究了可加奇性算子空间.证明了有界(局部有界、球有界)可加奇性算子空间关于相应的算子次范数(拟次范数)构成一个次范(拟次范)整线性空间.此外,还给出了可加奇性算子空间成为完备次范整线性空间的几个充分条件.
Abstract:
Using the three different sub-norm and quasi-sub-norms of additive odd operators on sub-normed integral-linear spaces,the space of additive odd operators is studied. We prove that the space of bounded ( local-bounded,ballbounded) additive odd operators with a corespoinding sub-norm ( quasi-sub-norm) of operators is a sub-normed ( quasisub- normed) space. In addition,we also give some sufficient conditions for these spaces of additive odd operators to be complete sub-normed integral-linear spaces.

参考文献/References:

[1] Wang G J,Wang W. Generalization of the scheerffer’s theorem[J]. Indian J Math,1999,41( 3) : 407-414.
[2] Wang G J,Bai Y C. Linear structure on translation spaces[J]. Acta Mathematica Sinica: Chinese Series,2005,48( 1) : 1-10.
[3] Li H,Fang J X. Hahn-Banach theorem on Abel group[J]. Acta Mathematica Sinica: Chinese Series,2008,51( 5) : 965- 970.
[4] Li H,Fang J X. Additive odd operators on sub-normed integral-linear spaces[J]. Acta Mathematica Sinica: Chinese Series, 2010,53( 4) : 773-784.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 10671094) .
通讯联系人: 方锦暄,教授,研究方向: 泛函分析. E-mail: jxfang@ njnu. edu. cn
更新日期/Last Update: 2013-03-11