[1]王金剑,王寅,朱小蕾,等.纳米粒子在具有温度梯度的碳纳米管上运动模式的研究[J].南京师大学报(自然科学版),2012,35(03):68-73.
 Wang Jinjian,Wang Yin,Zhu Xiaolei.A Study on Motion Modes of Nanoparticles Supported on Carbon Nanotubes With Temperature Gradient[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):68-73.
点击复制

纳米粒子在具有温度梯度的碳纳米管上运动模式的研究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年03期
页码:
68-73
栏目:
化学
出版日期:
2012-09-20

文章信息/Info

Title:
A Study on Motion Modes of Nanoparticles Supported on Carbon Nanotubes With Temperature Gradient
作者:
王金剑;王寅;朱小蕾;
南京工业大学化学化工学院,材料化学工程国家重点实验室,江苏南京210009
Author(s):
Wang JinjianWang YinZhu Xiaolei
State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering, Nanjing University of Technology,Nanjing 210009,China
关键词:
纳米粒子碳纳米管分子动力学模拟温度梯度
Keywords:
nanoparticlescarbon nanotubesmolecular dynamics simulationtemperature gradient
分类号:
TB383.1
摘要:
采用分子动力学( MD) 模拟的方法,使用Born-Mayer-Huggins 与Lennard-Jones 相互作用势函数,研究 KI 纳米粒子负载在具有一定温度梯度的碳纳米管外壁上的运动特征. 模拟结果表明,在纳米粒子由碳管高温端向低温端运动的过程中有两种模式. 通过KI 纳米粒子在具有温度梯度的碳管上的轨迹分析,说明了这些运动模式与碳纳米管的手性、管径和温度梯度的大小密切相关. 通过KI 纳米粒子在具有温度梯度的碳管上的受力分析,解释了KI 纳米粒子在具有温度梯度的碳管上采取特殊模式运动的原因. 本文的工作对于设计纳米尺度的马达有一定的指导意义.
Abstract:
Molecular dynamics ( MD) simulations are carried out with Born-Mayer-Huggins and Lennard-Jones interaction potentials. We investigate the motion characteristics of KI nanoparticles attached on the outside of carbon nanotubes ( CNTs) with temperature gradient ( T) . The results demonstrate that there are two kinds of motion modes during KI nanoparticles move from the hot zone to the cold zone of the CNTs. Through the analysis of the trajectory of KI nanoparticles supported on the CNTs subject to temperature gradient,we find the shape of the moving route are affected by the chirality,diameter,and temperature gradient of CNT. The analysis of the force added on KI nanoparticles supported on the CNTs with temperature gradient can account for the relationship between the motion modes of KI nanoparticles and the chirality of CNT. The results of this article may be instructive in designing of novel nanoscale motors.

参考文献/References:

[1] Rurali R,Hernández E R. Thermally induced directed motion of fullerene clusters encapsulated in carbon nanotubes[J]. Chem Phys Lett,2010,497: 62-65.[2] Regan B C,Aloni S,Ritchie R O,et al. Carbon nanotubes as nanoscale mass conveyors[J]. Nature,2004,428: 924-927.
[3] Schoen P A E,Walther J H,Arcidiacono S,et al. Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes[J]. Nano Lett,2006,6( 9) : 1 910-1 917.
[4] Zambrano H A,Walther J H,Jaffe R L. Thermally driven molecular linear motors: a molecular dynamics study[J]. J Chem Phys,2009,131: 241 104-241 106.[5] Lohrasebi A,Neek-Amal M,Ejtehadi M R. Directed motion of C60 on a graphene sheet subjected to a temperature gradient [J]. Phys Rev E,2011,83: 042 601-042 604.
[6] Barreiro A,Rurali R,Hernández E R,et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes [J]. Science,2008,320: 775-778.
[7] Joung I S,Cheatham T E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations[J]. J Phys Chem B,2008,112: 9 020-9 041.
[8] Chandra B P. Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps [J]. J Lumin,2008,128: 1 217-1 224.
[9] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995,117: 1-19.
[10] Walther J H,Jaffe R,Halicioglu T,et al. Carbon nanotubes in water: structural characteristics and energetics[J]. J Phys Chem B,2001,105: 9 980-9 987.[11] Tosi M P,Fumi F G. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-Ⅱ[J]. J Phys Chem Solids, 1964,25: 45-52.
[12] Berendsen H J C,Postma J P M,van Gunsteren W F,et al. Molecular dynamics with coupling to an external bath[J]. J Chem Phys,1984,81: 3 684-3 690.[13] Schelling P K,Phillpot S R,Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity [J]. Phys Rev B,2002,65: 144 306-144 317.
[14] Steelet W A. The interaction of rare gas atoms with graphitized carbon black[J]. J Phys Chem,1978,82( 7) : 817-821.
[15] Hummer G,Rasaiah J C,Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001,414: 188-190.

相似文献/References:

[1]程承平,陈贵虎,李伟红,等.碳纳米管扭转引起的力学耦合效应[J].南京师大学报(自然科学版),2012,35(04):30.
 Cheng Chengping,Chen Guihu,Li Weihong,et al.Torsion-Induced Behaviors of Single-Walled and Double-Walled Carbon Nanotubes[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):30.
[2]潘吉超,姚飞,任腾飞,等.聚(3,4-乙烯基二氧噻吩)/碳纳米管复合膜修饰电极的电化学制备及其用于8-羟基-2\’-脱氧鸟嘌呤核苷的检测[J].南京师大学报(自然科学版),2012,35(02):66.
 Pan Jichao,Yao Fei,Ren Tengfei,et al.Electrochemical Preparation of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composite Film Modified Electrode and Its Application to Determination of 8-Hydroxy-2′-Deoxyguanosine[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):66.
[3]杨红晓,张爱民.碳纳米管限域效应及其催化应用研究进展[J].南京师大学报(自然科学版),2011,34(04):64.
 Yang Hongxiao,Zhang Aimin.Confinement in Carbon Nanotubes and Its Catalytic Application[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(03):64.
[4]何向东,罗成林.单壁碳纳米管端口连接过程的计算模拟[J].南京师大学报(自然科学版),2010,33(04):44.
 He Xiangdong,Luo Chenglin.Simulation Calculation for SWNT’s Ports Junctions Process[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(03):44.
[5]夏前正,刘姝娜,蔡称心.DNA化学损伤的电化学检测[J].南京师大学报(自然科学版),2007,30(04):119.
[6]吕亚芬,印亚静,杜攀,等.铁氧化还原蛋白的直接电化学[J].南京师大学报(自然科学版),2006,29(01):53.
 Lü Yafen,Yin Yajing,Du Pan,et al.Direct Electrochemistry of Ferredoxin[J].Journal of Nanjing Normal University(Natural Science Edition),2006,29(03):53.
[7]陆 旭,狄云松.碳纳米管场发射背阴极式三极结构及其模拟[J].南京师大学报(自然科学版),2013,36(01):54.
 Lu Xu,Di Yunsong.Back-Cathode Triode Structure for CNT and Its Simulations[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):54.
[8]崔云康,狄云松,陈 静,等.碳纳米管场发射器件放气特性分析及其对场发射性能的影响[J].南京师大学报(自然科学版),2017,40(01):151.[doi:10.3969/j.issn.1001-4616.2017.01.022]
 Cui Yunkang,Di Yunsong,Chen Jing,et al.Outgassing Analysis of the CNTs Field Emission Devicesand Its Influence on Field Emission Performance[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):151.[doi:10.3969/j.issn.1001-4616.2017.01.022]
[9]魏 辉,魏 松,朱小蕾.受限在单壁碳纳米管中的Pd-Au-Pt三元金属纳米粒子相变机理的研究[J].南京师大学报(自然科学版),2018,41(02):61.[doi:10.3969/j.issn.1001-4616.2018.02.011]
 Wei Hui,Wei Song,Zhu Xiaolei.Exploration on Mechanism of Phase Transition of Pd-Au-Pt TrimetallicNanoparticles Confined in Single-Walled Carbon Nanotubes[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):61.[doi:10.3969/j.issn.1001-4616.2018.02.011]
[10]魏 松,于有权,朱小蕾.受限在单壁碳纳米管中金纳米粒子相变的分子动力学模拟研究[J].南京师大学报(自然科学版),2018,41(02):66.[doi:10.3969/j.issn.1001-4616.2018.02.012]
 Wei Song,Yu Youquan,Zhu Xiaolei.Study on the Phase Transitions of Gold Nanoparticles Confined in Single-WalledCarbon Nanotubes Based on Molecular Dynamics Simulation[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):66.[doi:10.3969/j.issn.1001-4616.2018.02.012]

备注/Memo

备注/Memo:
基金项目: 江苏省科技厅自然科学基金( BK2008372) 、国家自然科学基金( 20706029,20876073) .通讯联系人: 朱小蕾,教授,博士生导师,研究方向: 分子模拟. E-mail: xlzhu@ njut. edu. cn
更新日期/Last Update: 2013-03-11