[1]万辉,李永凤.一个传染病模型的Bogdanov-Takens分支分析(英文)[J].南京师范大学学报(自然科学版),2012,35(04):7-13.
 Wan Hui,Li Yongfeng.Bogdanov-Takens Bifurcation Analysis of an Epidemic Model[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(04):7-13.
点击复制

一个传染病模型的Bogdanov-Takens分支分析(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年04期
页码:
7-13
栏目:
数学
出版日期:
2012-12-20

文章信息/Info

Title:
Bogdanov-Takens Bifurcation Analysis of an Epidemic Model
作者:
万辉;李永凤;
1. 江苏省大规模复杂系统数值模拟重点实验室,南京师范大学数学科学学院,江苏南京210023) ( 2. 郑州轻工业大学数学与信息科学系,河南郑州450000
Author(s):
Wan Hui 1Li Yongfeng 2
1.Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
传染病模型医疗资源Bogdanov-Takens 分支余维2
Keywords:
epidemic modelmedical resourceBogdanov-Takens bifurcation codimension 2
分类号:
O175
摘要:
为了研究有限的医疗资源对传染病传播影响,本文考虑了一个SIR传染病模型,并着重分析了模型的Bogdanov-Takens分支问题.结果表明,当基本再生数等于一个子阈值时,模型将出现非常复杂的分支现象.此时,模型惟一的平衡点为余维2尖点.
Abstract:
In this paper,a SIR epidemic model is proposed to understand the impact of limited medical resource on infectious disease transmission, and Bogdanov-Takens bifurcation is analyzed. Our results suggest that the model may exhibit vital dynamics when the basic reproduction number R0 is equal to a subthreshold value and the unique equilibrium is a cusp of codimension 2.

参考文献/References:

[1] Alexander M E,Moghadas S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Math Biosci, 2004, 189: 75-96.
[2] Hethcote H W. Mathematics of infectious diseases[J]. SIAM Review, 2000, 42: 599-653.
[3] Hu Z,Teng Z, Jiang H. Stability analysis in a class of discrete SIRS epidemic models[J]. Nonlinear Analysis: Real World Applications, 2012, 13: 2 017-2 033.
[4] Shi X,Cui J,Zhou X. Stability and Hopf bifurcation analysis of an eco-epidemic model with a stage structure[J]. Nonlinear Analysis, 2011, 74: 1 088-1 106.
[5] Wan H,Zhu H. The backward bifurcation in comportmental models for West Nile virus[J]. Mathematical Biosciences, 2010, 227: 20-28.
[6] Wang W. Backward bifurcation of an epidemic model with treatment[J]. Math Biosci, 2006, 201: 58-71.
[7] Zhang X,Liu X. Backward bifurcation of an epidemic model with saturated treatment function[J]. J Math Anal Appl, 2008, 348: 433-443.
[8] van den Driessche P,Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180: 29-48.
[9] Kuznetsov Y A. Elements of Applied Bifurcation Theory,Applied Mathematical Sciences [M]. New York: Springer- Verlag, 1995.
[10] Busenberg S,Cooke K. Vertically Transmitted Diseases[M]. New York: Springer-Verlag, 1993.

相似文献/References:

[1]韦春妙,庞建华,陆双扬,等.具有饱和发生率的次优免疫反应传染病模型分析[J].南京师范大学学报(自然科学版),2016,39(01):48.
 Wei Chunmiao,Pang Jianhua,Lu Shuangyang,et al.Analysis of a Sub-Optimal Immune Reaction EpidemiologicalModel with Saturation Incidence[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(04):48.
[2]白 婵,万 辉.一个传染病模型中的后向分支问题(英文)[J].南京师范大学学报(自然科学版),2017,40(03):5.[doi:10.3969/j.issn.1001-4616.2017.03.002]
 Bai Chan,Wan Hui.Backward Bifurcation in an Epidemic Model[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(04):5.[doi:10.3969/j.issn.1001-4616.2017.03.002]

备注/Memo

备注/Memo:
Foundation item: Supported by NSFC ( 11126049,11201236,11201433 ) ,NSF of the Jiangsu Higher Education Committee of China ( 11KJA110001,1 2KJB110012) ,NSF of Henan( 112300410156,2 011A110022) .
Corresponding author: Wan Hui, lecture,majored in mathematical biology. E-mail: wanh2046@163. com
更新日期/Last Update: 2013-03-11