[1]袁 园,孙志人.分数ID-[a,b]-因子临界图的最小度与独立数条件(英文)[J].南京师范大学学报(自然科学版),2013,36(03):9-12.
 Yuan Yuan,Sun Zhiren.Independent Number and Degree Condition for Fractional ID-[a,b]-Factor-Critical Graphs[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):9-12.
点击复制

分数ID-[a,b]-因子临界图的最小度与独立数条件(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第36卷
期数:
2013年03期
页码:
9-12
栏目:
数学
出版日期:
2013-09-30

文章信息/Info

Title:
Independent Number and Degree Condition for Fractional ID-[a,b]-Factor-Critical Graphs
作者:
袁 园孙志人
南京师范大学数学科学学院,江苏 南京 210023
Author(s):
Yuan YuanSun Zhiren
School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
独立数最小度分数[ab]-因子分数ID-[ab]-因子临界图
Keywords:
independent numberminimum degreefractional [ab]-factorfractional ID-[ab]-factor-critical
分类号:
O157.5
摘要:
对图G的每个独立集I,G-I有分数[a,b]-因子,G是分数ID-[a,b]-因子临界图.本文证明了若α(G)≤(4b(δ(G)-b+1))/((a+1)2+24b),G是分数ID-[a,b]-因子临界图.
Abstract:
A graph G is fractional independent-set-deletable [a,b]-factor-critical if G-I has a fractional [a,b]-factor for every independent set I of G.In this paper,we prove that if α(G)≤(4b(δ(G)-b+1))/((a+1)2+24b),then G is fractional ID-[a,b]-factor-critical.

参考文献/References:

[1] Bondy J A,Murty U S R.Graph Theory With Applications[M].New York:Macmillan Ltd Press,1976.
[2]Kano M.A sufficient conditions for a graph to have[a,b]-factors[J].Graphs and Combin,1990,6:245-251.
[3]Li Yanjun,Cai Maocheng.A degree condition for a graph to have[a,b]-factors[J].J Graph Theory,1998,27:1-6.
[4]Liu Guizhen,Yu Qinglin.Graph Factors and Matching Extensions[M].Beijing:Higher Education Press,2009.
[5]Mastsuda H.A neighbourhood condition for graphs to have[a,b]-factors[J].Discrete Math,2000,224:289-292.
[6]Zhou Sizhong.Independence number,connectivity and(a,b,k)-critical graphs[J].Discrete Math,2009,309:4 144-4 148.
[7]Cai Jiansheng,Liu Guizhen.Stability number and fractional f-factors in graphs[J].Ars Combin,2006,80:141-146.
[8]Liu Guizhen,Zhang Lanju.Properties of fractional k-factors of graphs[J].Acta Math Sci Ser B,2005,25:301-304.
[9]Scheinerman E R,Ullman D H.Fractional Graph Theory[M].New York:Wiley,1997.
[10]Zhou Sizhong.Some new sufficient conditions for graphs to have fractional k-factors[J].Int J Comp Math,2011,88:484-490.
[11]Zhou Sizhong,Xu Lan,Sun Zhiren.Independent number and minimum degree for fractional ID-k-factor-critical graphs[J].Aequat Math,2012,84:71-76.
[12]Chang Renying,Liu Guizhen,Zhu Yan.Degree conditions of fractional ID-k-factor-critical graphs[J].Bull Malays Math Sci Soc,2010,33:355-360.
[13]Zhou Sizhong,Sun Zhiren,Liu Hongxia.A minimum degree for fractional ID-[a,b]-factor-critical graphs[J].Bull Aust Math Soc,2012,86:177-183.
[14]Liu Guizhen,Zhang Lanju.Fractional(g,f)-factors of graphs[J].Acta Math Sci Ser B,2001,21:541-545.

备注/Memo

备注/Memo:
Received date:2013-05-22. Corresponding author:Sun Zhiren,professor,majored in graph theory and combinatorial optimization.E-mail:zrsun@njnu.edu.cn
更新日期/Last Update: 2013-09-30