[1]杜滨涛,王 恬,郭明磊,等.单介质层对微球透镜成像特性的影响[J].南京师范大学学报(自然科学版),2017,40(02):133.[doi:10.3969/j.issn.1001-4616.2017.02.022]
 Du Bintao,Wang Tian,Guo Minglei,et al.Influence of Single Dielectric Layer on Microscale Spherical Lens Imaging[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(02):133.[doi:10.3969/j.issn.1001-4616.2017.02.022]
点击复制

单介质层对微球透镜成像特性的影响()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年02期
页码:
133
栏目:
·物理学·
出版日期:
2017-06-29

文章信息/Info

Title:
Influence of Single Dielectric Layer on Microscale Spherical Lens Imaging
文章编号:
1001-4616(2017)02-0133-04
作者:
杜滨涛王 恬郭明磊夏 阳邓 芸叶永红
南京师范大学物理科学与技术学院,江苏 南京 210023
Author(s):
Du BintaoWang TianGuo MingleiXia YangDeng YunYe Yonghong
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
超分辨薄膜微透镜成像
Keywords:
super-resolution filmmicroscale lensesimaging
分类号:
O439
DOI:
10.3969/j.issn.1001-4616.2017.02.022
文献标志码:
A
摘要:
利用嵌有钛酸钡(BTG)微球的聚二甲基硅氧烷(PDMS)薄膜突破衍射极限是目前实现超分辨成像的一种常规方法. 本文提出在微球透镜与样品表面增加一种介质层,并研究了不同厚度的SU-8单层介质层对成像性质影响. 实验发现:随着SU-8介质层厚度从0增大到270 nm,成像视场大小从10.8 μm增加到了13.2 μm. 其中SU-8厚度在160 nm左右时候,视场大小与对比度最优. 此外,对于厚度为160 nm的不同材料介质层,发现SU-8介质层最能提高视场大小,而二氧化钛(TiO2)介质层削弱了视场大小. 我们认为耦合进介质层的光信息含量决定了成像质量,并通过光波干涉相消对这一现象进行了解释. 这一实验研究有利于增进人们对微透镜成像原理的认识.
Abstract:
Imaging by barium titanate glass(BTG)embedded in polydimethylsiloxane(PDMS)film is a common technique to achieve optical super-resolution now. We propose to deposit a dielectric layer between the microsphere lens and the object surface,and study the imaging properties with different SU-8 thicknesses. Our experimental results reveal that the field of view(FOV)increases from 10.8 μm to 13.2 μm when the film thickness increases from 0 to 270 nm. It is found that the SU-8 layer with a thickness around 160 nm can obviously increase the imaging FOV and contrast. Moreover,for different dielectric layers with the same film thickness 160 nm,the SU-8 layer can improve FOV while the TiO2 layer cannot. We also found that the amount of light coupling into the dielectric layer decides the image quality. This phenomenon is explained by the destructive interference effect. Our findings can advance the understanding of the super-resolution imaging mechanisms in microscale lenses.

参考文献/References:

[1] WANG Z,GUO W,LI L,et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature communication,2011,218(2):1-6.
[2]HAO X,KUANG C,LIU X,et al. Microsphere based microscope with optical super-resolution capability[J]. Applied physics letters. 2011,99:203102(1-3).
[3]DARAFSHEH A,WALSH G F,DAL NEGRO L,et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied physics letters,2012,101:141128(1-4).
[4]DARAFSHEH A,FIDDY M A,ASTRATOV V N. Super-resolution imaging by high-index microspheres immersed in a liquid[C]//JAWORSKI M,MARCINIAK M. International Conference on Transparent Optical Networks-ICTON. Coventry,England,2012,paper TU.A6.5.
[5]HAO X,KUANG C,LI Y,et al. Hydrophilic microsphere based mesoscopic-lens microscope(MMM)[J]. Optics communication,2012,285(20):4 130-4 133.
[6]DU B,YE Y,HOU J,et al. Sub-wavelength image stitching with removable microsphere-embedded thin film[J]. Applied physics a materials science and processing,2016,122(1):1-6.
[7]ASTRATOV V N,DARAFSHEH A. Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders[P]. US patent application 2014/0355108 Al published on 2014-12-04,related to U.S. Provisional application 61/656,710 field on 2010-06-07.
[8]庞辉,杜春蕾,邱琪,等. 介质微球超分辨成像薄膜[J]. 光子学报,2015,44(4):0426004(1-4).
[9]ALLEN K W,FARAHI N,LI Y,et al. Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices[C]//IEEE Proc of Aerospace and Electronics Conference(NAECON). Dayton,June 24-27,2014.
[10]ALLEN K W. Waveguide,photodetector and imaging applications of microspherical photonics[D]. Charlotte:University of North Carolina,2014:98-122.
[11]ALLEN K W,FARAHI N,LI Y,et al. Super-resolution microscopy by movable thin-films with embedded microspheres:resolution analysis[J]. Annalen der physik,2015,527(7/8):513-522.
[12]DARAFSHEH A,GUARDIOLA C,PALOVCAK A,et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers[J]. Optics letters,2015,40(1):5-8.
[13]WANG Z. Improvements in and Relating to Lenses. PCT/GB2014/052578[P]. 2014-8-22.
[14]GUO M,YE Y,HOU J,et al. Experimental far-field imaging properties of high refractive index microsphere lens[J]. Photonics research,2015,3(6):339-342.
[15]LEE S,LI L,WANG Z,et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects[J]. Applied optics,2013,52(30):7 265-7 270.
[16]HAO X. LIU X,KUANG C,et al. Far-field super-resolution imaging using near-field illumination by micro-fiber[J]. Applied physics letters,2013,102(1):1-4.
[17]HAO X,KUANG C,. LI Y,et al. Evanescent-wave-induced frequency shift for optical superresolution imaging[J]. Optics letters,2013,38(14):2 455-2 458.
[18]HAO X,KUANG C,GU Z,Y,et al. From microscopy to nanoscopy via visible light[J]. Light-science and application,2013,10(e108):1-10.

备注/Memo

备注/Memo:
收稿日期:2016-10-21.
基金项目:国家自然科学基金项目(61475073、61673287)、2016年南京师范大学学生科学基金.
通讯联系人:叶永红,教授,研究方向:纳米光子学. E-mail:yeyonghong@njnu.edu.cn
更新日期/Last Update: 2017-06-30