[1]衡 航.基于金属-介质-金属圆柱体微腔的光的强局域和高吸收特性(英文)[J].南京师范大学学报(自然科学版),2017,40(02):137.[doi:10.3969/j.issn.1001-4616.2017.02.023]
 Heng Hang.Strong Light Confinement and High Absorptionof Metal-Dielectric-Metal(MDM)Cylindrical Microcavities[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(02):137.[doi:10.3969/j.issn.1001-4616.2017.02.023]
点击复制

基于金属-介质-金属圆柱体微腔的光的强局域和高吸收特性(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年02期
页码:
137
栏目:
·物理学·
出版日期:
2017-06-29

文章信息/Info

Title:
Strong Light Confinement and High Absorptionof Metal-Dielectric-Metal(MDM)Cylindrical Microcavities
文章编号:
1001-4616(2017)02-0137-07
作者:
衡 航
南京师范大学分析测试中心,江苏 南京 210023
Author(s):
Heng Hang
Analysis and Testing Center,Nanjing Normal University,Nanjing 210023,China
关键词:
微腔金属-半导体-金属吸收
Keywords:
microcavitymetal-semiconductor-metalabsorption
分类号:
O436.2
DOI:
10.3969/j.issn.1001-4616.2017.02.023
文献标志码:
A
摘要:
等离激元纳米结构能够把光场局域到非常小的空间,而应用在表面增强光谱、生物传感和太阳能电池等领域. 我们设计了一种对光场具有高局域和强吸收特性的基于金-介质-金三明治结构的圆柱体微腔结构. 计算结果显示:该圆柱微腔能够局域入射光的绝大部分能量,产生强的平均电磁场能量密度. 微腔内的平均电磁场能量密度增强因子G达到103~104数量级,而且G值随着介质层的厚度、介电常数和圆饼半径的变化呈现出了一定的变化规律. 在正入射波的条件下,经计算得到了4.8 μm~6 μm范围的反射光谱和吸收率C(C=1-Rmin),通过优化介电常数和结构的几何参数,C值达到99%.
Abstract:
Plasmonic nanostructures concentrate optical field into extremely tiny volumes,which is useful for surface enhanced spectroscopy,bio-sensing and solar cells. We present the design of a cylindrical microcavity of high absorption and strong light confinement. The cylindrical microcavity is based on Au-dielectric-Au sandwiched structure. Numerically study shows that cylindrical microcavity can provide high electromagnetic average energy density and contain the most energy of the incoming light. The enhancement factor of average energy density G is up to 103~104-fold inside the cavity. The calculation results show that the G presents the regularities with the change of the thickness of the dielectric slab,dielectric constant and the radius of gold disk. At the normal incidence of electromagnetic radiation,the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and the absorption efficiency C(C=1-Rmin)reaches 99% by optimizing the dielectric constant and the structure’s geometry parameters.

参考文献/References:

[1] DU L P,ZHANG X J,MEI T,et al. Localized surface plasmons,surface plasmon polaritons and their coupling in 2D metallic array for SERS[J]. Opt Express,2010,18:1 959-1 965.
[2]MAIER S A,ATWATER H A. Plasmonics:localization and guiding of electromagnetic energy in metal/dielectric structures[J]. J Appl Phys,2005,98:011101-1-011101-10.
[3]KOGELBAUER I,HEINE E. Adaptation of soil physical measurement techniques for the delineation of mud and lakebed sediments at neusiedler see[J]. Sensors,2013,13:17 067-17 083.
[4]FEVILLET P C,TODOROV Y,STEED R. Extremely sub-wavelength THz metal-dielectric wire microcavities[J]. Opt Express,2012,20:29 121-29 130.
[5]TODOROV Y,TOSETTO L,TEISSIER J,et al. Optical properties of metal-dielectric-metal microcavities in the THz frequency range[J]. Opt Express,2010, 18:13 886-13 907.
[6]FEVILLET P C,TODOROW Y,VASANELLI A,et al. Strong near field enhancement in THz nano-antenna arrays[J]. Sientific reports,2013(3):299-308.
[7]WANG X D,YE Y H,ZHANG C. Tunable figure of merit for a negative-index metamaterial with a sandwich configuration[J]. Opt Lett,2009,34:3 568-3 570.
[8]CHEN K,WEN Q Y,ZHANG H B. Study on the broadband terahertz metamaterial absorber[J]. Electronic components and materials,2011,30:56-59.
[9]LANDY N I,SAJUYIGBE S. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100:1 586-1 594.

备注/Memo

备注/Memo:
Received data:2016-09-12.
Foundation item:Supported by the Program of Natural Science Research of Jiangsu Higher Education Institutions of China(14KJB140005).
Corresponding author:Heng Hang,experimentalist,majored in micro-nano material. E-mail:40383@njnu.edu.cn
更新日期/Last Update: 2017-06-30