[1]张恒闻,王瑞博,曹重阳,等.单轴晶体中紧聚焦柱对称矢量涡旋光诱导磁化场特性研究[J].南京师范大学学报(自然科学版),2020,43(02):10-16.[doi:10.3969/j.issn.1001-4616.2020.02.003]
 Zhang Hengwen,Wang Ruibo,Cao Chongyang,et al.Study on the Magnetization Field Induced by Tightly Focused CylindricalSymmetric Vector Vortex Light in a Uniaxial Crystal[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(02):10-16.[doi:10.3969/j.issn.1001-4616.2020.02.003]
点击复制

单轴晶体中紧聚焦柱对称矢量涡旋光诱导磁化场特性研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第43卷
期数:
2020年02期
页码:
10-16
栏目:
·物理学·
出版日期:
2020-05-30

文章信息/Info

Title:
Study on the Magnetization Field Induced by Tightly Focused CylindricalSymmetric Vector Vortex Light in a Uniaxial Crystal
文章编号:
1001-4616(2020)02-0010-07
作者:
张恒闻王瑞博曹重阳朱竹青
南京师范大学物理科学与技术学院,江苏 南京 210023
Author(s):
Zhang HengwenWang RuiboCao ChongyangZhu Zhuqing
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
逆法拉第效应单轴晶体矢量涡旋光束紧聚焦
Keywords:
inverse Faraday effectuniaxial crystalvector vortex beamtightly focused
分类号:
O436
DOI:
10.3969/j.issn.1001-4616.2020.02.003
文献标志码:
A
摘要:
本文基于逆法拉第效应,利用矢量衍射理论详细研究了紧聚焦的柱对称矢量涡旋光束在单轴晶体中诱导磁化场的分布. 探讨了输入光场矢量特性、单轴晶体磁光常数间的比值、o光和e光折射率差以及各向同性介质-单轴晶体界面位置对磁化场分布的影响. 数值模拟发现,单轴晶体磁光常数间的比值愈大、o光和e光折射率差越小以及各向同性介质-单轴晶体界面的位置趋近于透镜焦点,都会使磁化强度得到增强,半高全宽减小. 与各向同性介质中的磁化场相比,单轴晶体中磁化场半高全宽更小,磁斑长度更长. 这将有利于全光磁存储记录密度的提高以及磁化反转率的提升,并为全光磁记录、原子捕获、光刻等应用提供理论指导和新的调控手段.
Abstract:
Based on the vector diffraction theory and inverse Faraday effect,we detailedly studied the distribution of magnetization fields induced by tightly focused cylindrically polarized vortex beams in a uniaxial crystals. The effects of the vector character of the incident beam,the ratio between the magneto-optical constants of the uniaxial crystal,the value of extraordinary refractive index minus ordinary refractive index,and the location of interface between the isotropic media and the uniaxial crystal are discussed. Based on numerical simulation,it is found that the larger the ratio between the magneto-optical constants of the uniaxial crystal,the smaller the value of extraordinary refractive index minus ordinary refractive index,or the closer the location of interface between the isotropic media and the uniaxial crystal will all increase the maximum intensity of the magnetization field and decrease the full width at half maximum. Importantly,the full width at half maximum of the magnetization field in the uniaxial crystal is smaller than that in an isotropic crystal,and the length of magnetic spot is longer than that in the isotropic crystal. These will be beneficial to the improvement of recording density and the magnetization reversal rate of the all-optical magnetic storage,and will provide theoretical guidance and the new way control for the all-optical magnetic recording,atomic capture,lithography and other applications.

参考文献/References:

[1] VAN DER ZIEL J P,PERSHAN P S,MALMSTROM L D. Optical-induced magnetization resulting from the inverse Faraday effect[J]. Physical review letters,1965,15(5):190-193.
[2]STANCIU C D,HANSTEEN F,KIMEL A V,et al. All-optical magnetic recording with circularly polarized ligh[J]. Physical review letters,2007,99(4):047601.
[3]WELLER D,MOSER A. Thermal effect limits in ultrahigh-density magnetic recording[J]. IEEE transactions on magnetics,1999,35(6):4423-4439.
[4]HELSETH L E. Light-induced magnetic vortices[J]. Optics letters,2011,36(6):987-989.
[5]YAN W,NIE Z,LIU X,et al. Dynamic control of transverse magnetization spot arrays[J]. Optics express,2018,26:16824-16835.
[6]ALBRECHT M,RETTNER C T,MOSER A,et al. Recording performance of high-density patterned perpendicular magnetic media[J]. Applied physics letters,2002,81(15):2875-2877.
[7]KHORSAND A R,SAVOINI M,KIRILYUK A,et al. Role of magnetic circular dichroism in all-optical magnetic recording[J]. Physical review letters,1988,108(12):127205.
[8]WANG S,LI X,ZHOU J. All-optically configuring the inverse Faraday effect for nanoscale perpendicular magnetic recording[J]. Optics express,2015,23(10):13530-13536.
[9]ATUTOV S N,CALABRESE R,GUIDI V,et al. Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption[J]. Physical review A,2003,67(5):053401.
[10]PHELAN C F,HENNESSY T,BUSCH T. Shaping the evanescent field of optical nanofibers for cold atom trapping[J]. Optics express,2013,21(22):27093-27101.
[11]MAJORS P D,MINARD K R,ACKERMAN E J,et al. A combined confocal and magnetic resonance microscope for biological studies[J]. Review of scientific instruments,2002,73(12):4329-4338.
[12]GRINOLDS M S,WARNER M,De GREVE K,et al. Subnanometre resolution in threedimensional magnetic resonance imaging of individual dark spins[J]. Nature nanotechnology,2014,9(4):279-284.
[13]ZHANG Y J,BAI J. High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights[J]. Physics letters A,2008,372(41):6294-6297.
[14]JIANG Y,LI X,GU M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam[J]. Optics letters,2013,38(16):2957-2960.
[15]NIE Z,DING W,SHI G,et al. Achievement and steering of light-induced sub-wavelength longitudinal magnetization chain[J]. Optics express,2015,23(16):21296-21305.
[16]GONG L,WANG L,ZHU Z,et al. Generation and manipulation of super-resolution spherical magnetization chains[J]. Applied optics,2016,55(21):5783-5789.
[17]WANG S,CAO Y,LI X. Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy[J]. Optics letters,2017,42(23):5050-5053.
[18]LUO J,ZHANG H,WANG S,et al. Three-dimensional magnetization needle arrays with controllable orientation[J]. Optics letters,2019,44(4):727-730.
[19]KIMEL A V,KIRILYUK A,USACHEV P A,et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses[J]. Nature,2005,435(7042):655-657.
[20]ASTAKHOV G V,KIMEL A V,SCHOTT G M,et al. Magnetization manipulation in(Ga,Mn)As by subpicosecond optical excitation[J]. Applied physics letters,2005,86(15):152506.
[21]IIHAMA S,XU Y,DEB M,et al. Single-shot multi-level all-optical magnetization switching mediated by spin transport[J]. Advanced materials,2018,30(51):e1804004.
[22]SHI T,ZHANG Y. Magnetization in the uniaxial crystal induced by highly focusing laser beam[J]. Acta photonica sinica,2011,40(4):565-568.
[23]STALLINGA S. Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus[J]. Journal of the optical society of America A,2001,18(11):2846-2859.
[24]YOUNGWORTH K,BROWN T. Focusing of high numerical aperture cylindrical vector beams[J]. Optics express,2000,7(2):77-87.
[25]VOLKOV P V,NOVIKOV M A. Inverse faraday effect in anisotropic media[J]. Crystallography reports,2002,47(5):824-828.

备注/Memo

备注/Memo:
收稿日期:2020-02-12.
基金项目:国家自然科学基金项目(61875093)、江苏省自然科学基金项目(BK20181384)、天津市自然科学基金项目(19JCYBJC16500).
通讯作者:朱竹青,博士,副教授,研究方向:数字全息、矢量光场及诱导磁化场调控. E-mail:zhuqingzhu@njnu.edu.cn
更新日期/Last Update: 2020-05-15