[1]魏爽,杨明.基于成对约束降维的MicroRNA预测[J].南京师大学报(自然科学版),2010,33(04):166-171.
 Wei Shuang,Yang Ming.The Prediction of MiRNA Based on Pairwise Constrains Dimensionality Reduction[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):166-171.
点击复制

基于成对约束降维的MicroRNA预测()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年04期
页码:
166-171
栏目:
计算机科学
出版日期:
2010-12-20

文章信息/Info

Title:
The Prediction of MiRNA Based on Pairwise Constrains Dimensionality Reduction
作者:
魏爽;杨明;
南京师范大学计算机科学与技术学院, 江苏南京210046
江苏省信息安全保密技术工程研究中心, 江苏南京210046
Author(s):
Wei ShuangYang Ming
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210046,China
关键词:
m iRNA 成对约束 降维 预测
Keywords:
m iRNA pairw ise constra ins d im ensiona lity reduction pred ic tion
分类号:
TP181
摘要:
MicroRNA是一类内源、单链非编码小RNA,在生物体内发挥着重要的调控作用.对microRNA的预测有助于研究和理解它们的生物学功能.目前,针对成对约束的microRNA预测方法还报道不多.为此,本文提出了一个基于成对约束的降维算法,该算法并入数据局部结构保持策略,以此有效改进microRNA的预测性能.在mi-croRNA数据集和UCI数据集上的实验结果表明,新提出的基于成对约束的降维方法是有效可行的.
Abstract:
M icroRNAs are a class of non-coding RNA s o f sing le-stranded, endogenous, wh ich p lay an im po rtant ro le in gene regu lation. The pred iction o fM icroRNAs w ill help a lot to study and understand their b io log ica l function. At present, very littlew ork has been done for the prediction o fm icroRNA s by using pa irw ise constra ins. The re fo re, a fter adding local struc ture preserv ing strategy, a d im ensiona lity reduction a lgo rithm based on pa irw ise constrains is introduced to improve the pred ic tion o f m icroRNAs e ffectively. Experim ental results on m icroRNA and UC I da ta sets va lidate the perform ance o f the proposed algor ithm.

参考文献/References:

[ 1] F ire S Xu, M ontgom eryM, Kastas S, e t a .l Potent and specific gene tic interference by double-stranded RNA in Caeno rhabd-i tis e legans[ J]. Nature, 1998, 391( 6669): 806-811.
[ 2] Lee Y. M icroRNA m atura tion: stepw ise processing and subce llu la r lo ca lization[ J]. EM BO J, 2002, 21( 17): 4 663-4 670.
[ 3] Barte l D P. M icroRNA s: g enom ics, b iogenesis, m echan ism, and function[ J] . C el,l 2004, 116( 2): 281-297.
[ 4] Kur iha ra Y, W atanabeY. A rabidopsis m icro-RNA b iogenesis through D icer- like 1 prote in functions[ J]. ProcN atlAcad Sc,i 2004, 101( 3): 12 753-12 758.
[ 5] Zhang B. M icroRNA s and the ir regulatory roles in an im als and plants[ J]. J Ce ll Physio,l 2007, 210( 2) : 279-289.
[ 6] Tanzer A, Stadler P F. M o lecu la r evo lution of am icroRNA cluster[ J]. JM o l B io,l 2004, 339( 2) : 327-335.
[ 7] M o lnar A, Schw ach F, Studho lm e D J, et a.l M iRNAs con tro l gene expression in the sing le-ce ll a lga Ch lam ydom onas re inhardtii[ J]. Na ture, 2007, 447( 7148) : 1 126-1 129.
[ 8] Kren B T, W ong P Y, Sa rverA, et a.l m icroRNAs identified in high ly pur ified liver-der ived m itochondriam ay play a ro le in apoptosis[ J]. RNA B io ,l 2009, 6( 1): 65-72.
[ 9] G rosshansH, Slack F J. M icro-RNAs: sm a ll is plentiful[ J]. J Cell B io ,l 2002, 156( 1): 17-21.
[ 10] Lee C T, R isom T, StraussW M. Evo lutionary conse rvation o fm ic roRNA regulato ry c ircu its: an ex am ination o f m icroRNA gene com plex ity and conserved m icroRNA- target interactions through m etazoan phy logeny [ J]. DNA Ce ll B io,l 2007, 26 ( 4): 209-218.
[ 11] Vapnik V N. The Nature of Statistica l Learning Theory[M ] . 2nd ed. Now Yo rk: Spr inger-V erlag, 1999.
[ 12] B re im an L. Random forests[ J]. M ach Learn, 2001, 45( 1): 5-32.
[ 13] Xue C. C lass ification o f rea l and pseudo m icroRNA precursors using local structure- sequence features and support vector m achines[ J] . BMC B io inform atics, 2005, 6: 310.
[ 14] Ng K L S, M ishra S K. De novo SVM c lassifica tion o f precursorm icroRNAs from genom ic pseudo hairp ins using g loba l and intr insic fo ld ing m easures[ J]. B io in fo rm atics, 2007, 23( 11): 1 321-1 330.
[ 15] Pasa ila D, M oho rianu I, C iortuz L. Us ing base pa iring probabilities forM iRNA recogn ition[ C ] / / Proceed ing o f the 10 th In ternational Sym posium on Sym bo lic and Nume ric A lgo lithm fo r Sc ientific Computing. T im isoara: IEEE Con ference Publishing, 2008: 519-525.
[ 16] W ang X ium e,i Gao X inbo, Yuan Yuan, et a.l Sem -i superv ised Gauss ian process latent var iable m ode l based on pairw ise constra ints[ J] . Neurocom puting, 2010, 73: 2 186-2 195.
[ 17] Bar-h ille lA, H ertz T, Shenta l N, et a.l Learn ing a m aha lanob is m etr ic from equivalence constra in ts[ J]. Journa l ofM ach ine Learn ing Research, 2005, 6: 937-965.
[ 18] TangW e,i Zhong Sh.i Pairw ise constra ints-gu ided d im ensina lity reduc tion[ C] / / SDM W orkshop on Feature Se lection for DataM in ing. B ethesda, 2006.
[ 19] C ai Deng, H eX iao fe,i H an Jiawe .i Sem -i superv ised d iscrim inant analysis[ C] / / Proceed ings o f the 11th IEEE Inte rnational Conference on Com puter V is ion. R io de Janeiro, 2007.
[ 20] H o tellingH. Analysis of a comp lex of statistica l var iables into pr inc ipal components[ J] . Journal of Educationa lPsycho logy, 1933, 24( 1933) : 417-441.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 60873176)、江苏省自然科学基金( BK2008430 ) .
通讯联系人: 杨 明, 博士, 教授, 博士生导师, 研究方向: 数据挖掘、机器学习、粗集理论与应用. E-m ail:m. yang@ n jnu. edu. cn
更新日期/Last Update: 2013-04-08