参考文献/References:
[1] Casati G,Chirikov B V,Ford J,et al. Stochastic behavior of a quantum pendulum under periodic perturbation[J]. Lect Notes Phys, 1979,93: 334-352.
[2] Wintgen D,Marxer H. Level statistics of a quantized cantori system[J]. Phys Rev Lett, 1988,60: 971-974.
[3] Kilbane D,Cummings A,O’Sullivan G,et al. Quantum statistics of a kicked particle in an infinite potential well[J]. Chaos, Solitons and Fractals,2006,30: 412-423.
[4] Heller E J,O’Connor P W,Gehlen J. The eigenfunctions of classical chaostic systems[J]. Physica Scripta, 1989,40: 354- 359.
[5] 杨双波,韦栋. 周期受击简谐振子系统的经典与量子动力学[J]. 南京师大学报: 自然科学版, 2011, 34( 4) : 49-54.
[6] Izrailev F M. Simple models of quantum chaos: spectrum and eigenfunctions[J]. Phys Rep,1990,196: 299-399.
[7] Casti G,Chirikov B V,Guarneri I. Energy-level statistics of integrable quantum systems[J]. Phys Rev Lett,1985,54: 1 350-1 353.
[8] Honig A,Wintgen D. Spectral properties of strongly perturbed Coulomb systems: fluctuation properties[J]. Phys Rev A, 1989,39: 5 642-5 656.
[9] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报: 自然科学版, 2009,32( 3) : 31-36.
相似文献/References:
[1]杨双波,韦栋.周期受击简谐振子系统的经典与量子动力学[J].南京师大学报(自然科学版),2011,34(04):49.
Yang Shuangbo,Wei Dong.Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(03):49.
[2]刘扬正,李平.利用间歇非线性时滞反馈控制一维Logistic系统的混沌运动[J].南京师大学报(自然科学版),2002,25(03):53.
Liu Yangzheng,Li Ping.The Chaotic Control of Logistic Map Based on the Occasional Nonlinear Time-delayed Feedback[J].Journal of Nanjing Normal University(Natural Science Edition),2002,25(03):53.
[3]刘扬正,李平.利用间歇非线性时滞反馈控制一维Logistic系统的混沌运动[J].南京师大学报(自然科学版),2002,25(04):53.
Liu Yangzheng,Li Ping.The Chaotic Control of Logistic Map Based on the Occasional Nonlinear Time-delayed Feedback[J].Journal of Nanjing Normal University(Natural Science Edition),2002,25(03):53.