[1]刘小贤,钟鸣,陈波.具有三自旋相互作用的横场中各向异性XY模型的协作参量[J].南京师大学报(自然科学版),2012,35(04):25-29.
Liu Xiaoxian,Zhong Ming,Chen Bo.Concurrence of Anisotropic XY Chains With Three-Site Interactions[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(04):25-29.
点击复制
具有三自旋相互作用的横场中各向异性XY模型的协作参量()
《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]
- 卷:
-
第35卷
- 期数:
-
2012年04期
- 页码:
-
25-29
- 栏目:
-
物理学
- 出版日期:
-
2012-12-20
文章信息/Info
- Title:
-
Concurrence of Anisotropic XY Chains With Three-Site Interactions
- 作者:
-
刘小贤1; 钟鸣1; 陈波2
-
( 1. 南京师范大学物理科学与技术学院,江苏南京210023) ( 2. 南京邮电大学通达学院,江苏南京210003)
- Author(s):
-
Liu Xiaoxian1; Zhong Ming1; Chen Bo2
-
1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
-
- 关键词:
-
横场中各向异性XY 模型; 三自旋相互作用; 量子相变; 量子纠缠; 协作参量
- Keywords:
-
anisotropic XY chains; three-site interactions; quantum phase transition; quantum entanglement; concurrence
- 分类号:
-
O431.2
- 摘要:
-
讨论了具有三自旋相互作用的横场中各向异性XY模型的量子相变和量子纠缠.数值研究了协作参量在相变点附近的行为.发现协作参量可以很好地体现系统的量子相变.
- Abstract:
-
Quantum phase transitions and quantum entanglement of anisotropic XY chains with the XZY - YZX type of three-site interaction are discussed. The behaviors of concurrence near the critical points is studied numerically. It is found that the behaviors of concurrence can furnish a dramatic signature of the quantum critical point.
参考文献/References:
[1] Thouless D J. Exchange in solid 3He and the Heisenberg Hamiltonian[J]. Proc Phys Soc London, 1965, 86( 5) : 893-904.
[2] Roger M,Hetherington J H,Delrieu J M. Magnetism in solid 3He[J]. Rev Mod Phys, 1983, 55( 1) : 1-64.
[3] Jedrak J,Spalek J. Renormalized mean-field t-J model of high-Tc superconductivity: comparison to experiment[J]. Phys Rev B, 2011, 83( 10) : 104512-1—104512-7.
[4] Hao X,Zhu S Q. Quantum communication in spin chain with multiple spin exchange interaction[J]. Commun Theor Phys, 2010, 53( 6) : 1 083-1 086.
[5] Schmidt K P,Dorier J,Lauchli A M. Solids and supersolids of three-body interacting polar molecules on an optical lattice[J]. Phys Rev Lett, 2008, 101( 15) : 150405-1—150405-4.
[6] Pachos J K,Plenio M B. Three-spin interactions in optical lattices and criticality in cluster hamiltonians[J]. Phys Rev Lett, 2004, 93( 5) , 056402-1—056402-4.
[7] Peng X H,Zhang J F,Du J F, et al. Quantum simulation of a system with competing two-and three-body interactions[J]. Phys Rev Lett, 2009, 103( 14) : 140501-1—140501-4.
[8] Tsvelik A M. Incommensurate phase of quantum one-dimensional magnetics[J]. Phys Rev B, 1990, 42( 1) : 779-785.
[9] Zvyagin A A. Quantum phase transitions in an exactly solvable quantum-spin biaxial model with multiple spin interactions [J]. Phys Rev B, 2009, 80( 1) : 014414-1—014414-7.
[10] Krokhmalskii T,Derzhko O,Stolze J, et al. Dynamic properties of the spin - 1 /2 XY chain with three-site interactions[J]. Phys Rev B, 2008, 77( 17) : 174404-1—174404-13.
[11] Derzhko V,Derzhko O,Richter J. Exact solution of a the spin - 1 /2 XX chain with three-site interactions in a rondom transverse field: influence of randomness on the quantum phase transition[J]. Phys Rev B, 2011, 83( 17) : 174428-1—174428-10.
[12] Yang M F. Reexamination of entanglement and the quantum phase transition[J]. Phys Rev A, 2005, 71( 3) : 030302-1( R) — 030302-4( R) .
[13] Suzuki M. The dimer problem and the generalized XY-model[J]. Phys Lett A, 1971, 34( 5) : 338-339.
[14] Cheng W W,Liu J M. Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions [J]. Phys Rev A, 2010, 82( 1) : 012308-1—012308-5.
[15] Cheng W W,Liu J M. Disentanglement from spin environment: role of multisite interaction[J]. Phys Rev A,2010,81( 4) : 044304-1—044304-4.
[16] Liu X X,Zhong M,Xu H, et al. Chiral phase and quantum phase transitions of anisotropic XY chains with three-site interactions [J]. J Stat Mech, 2012,P01003: 1-16.
[17] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Phys Rev Lett, 1998, 80( 10) : 2 245-2 248.
备注/Memo
- 备注/Memo:
-
基金项目: 江苏省普通高校自然科学研究资助项目( 12KJB140008) .通讯联系人: 刘小贤,讲师,研究方向: 凝聚态物理. E-mail: 06170@ njnu. edu. cn
更新日期/Last Update:
2013-03-11