[1]鞠训光,邵晓根,鲍 蓉,等.Hadoop下并行BP神经网络骆马湖水质分类[J].南京师大学报(自然科学版),2014,37(01):52.
 Ju Xunguang,Shao Xiaogen,Bao Rong,et al.Based on Parallel BP Neural Network of Classification on Water Quality of Luoma Lake Under Hadoop[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):52.
点击复制

Hadoop下并行BP神经网络骆马湖水质分类()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年01期
页码:
52
栏目:
计算机科学
出版日期:
2014-03-30

文章信息/Info

Title:
Based on Parallel BP Neural Network of Classification on Water Quality of Luoma Lake Under Hadoop
作者:
鞠训光1邵晓根1鲍 蓉1徐德兰2王海鹰1
(1.徐州工程学院信电工程学院,江苏 徐州 221111) (2.徐州工程学院环境工程学院,江苏 徐州 221111)
Author(s):
Ju Xunguang1Shao Xiaogen1Bao Rong1Xu Delan2Wan Haiying1
(1.School of Information and Electrical Engineering,Xuzhou Institute of Technology,Xuzhou 221111,China) (2.School of Environmental Engineering,Xuzhou Institute of Technology,Xuzhou 221111,China)
关键词:
骆马湖水质分类Hadoop并行BP神经网络
Keywords:
water quality of Luoma LakeHadoopparallel BP neural network
分类号:
TP391
文献标志码:
A
摘要:
研究借助云的计算向数据迁移机制及MapReduce并行处理海量数据的优势,解决BP神经网络在处理大规模样本数据时计算量大、网络训练时间长的瓶颈问题.构建了影响骆马湖水质的多污染因素评价网络模型,在Hadoop下应用并行BP网络算法,实现了对骆马湖水质分类挖掘,挖掘分析结果对骆马湖水质优化及生态修复具有决策支持性意义.
Abstract:
Research the advantage of using the mechanism of computing to data migration and MapReduce parallel processing of massive data,to solve the bottlenecks problem on large amount of computing and network training time when the BP neural network in dealing with a large sample data.Its constructed water quality evaluation model based on the pollution influence factors of Luoma Lake and mined the water quality classification of Luoma Lake by applied the parallel BP algorithm under Hadoop.Mining analysis results is meaningful of decision support for the water quality optimization and ecological remediation of Luoma Lake.

参考文献/References:

[1] 周蓉蓉,孙英兰.遗传神经网络在海水水质综合评价的应用[J].海洋湖沼通报,2009(3):167-173.
[2]刘华元,袁琴琴,王保保.并行数据挖掘算法综述[J].电子科技,2006(1):65-73.
[3]李会娜,周根宝.基于BP神经网络并行算法的研究[J].内蒙古农业大学学报:自然科学版,2011,32(4):286-289.
[4]胡月.BP算法并行化及在数据挖掘中的应用研究[D].重庆:重庆大学计算机学院,2003:10.
[5]刘猛.云计算平台下神经网络方法研究[D].成都:电子科技大学计算机系,2011.
[6]朱晨杰,杨永丽.基于MapReduce的BP神经网络算法研究[J].微型电脑应用,2012,28(10):9-12.
[7]Sebastian Richly,Georg Pueschel,Dirk Habic.MapReduce for scalable neural nets training[C]//2010 IEEE 6th World Congress on Services.Los Alamitos:IEEE Computer Society,2010:99-106.
[8]Sitalakshmi Venkatraman,Siddhivinayak Kulkarni.MapReduce neural network framework for efficient content based image retrieval from large datasets in the cloud[C]//12th International Conference on Hybrid Intelligent Systems(HIS).New York:IEEE Conference Publications,2012:64-68.
[9]Liu Zhiqiang,Li Hongyan,Miao Gaoshan.MapReduce based backpropagation neural network over large scale mobile data[C]//2010 Sixth International Conference on Natural Computation(ICNC 2010).New York:IEEE Conference Publications,2010:1726-1730.
[10]国家环境保护总局.GB3838—2002 地表水环境质量标准[S].北京:中国环境科学出版社,2002.
[11]李军华.云计算及若干数据挖掘算法的MapReduce化研究[D].成都:电子科技大学计算机系,2010.
[12]王凯.MapReduce集群多用户作业调度方法的研究与实现[D].长沙:国防科学技术大学计算机学院,2010.
[13]Tom White.Hadoop权威指南[M].北京:清华大学出版社,2010.
[14]陆桂华.关于骆马湖水生态环境保护的调研与建议[J].江苏水利,2008(9):12-16.

相似文献/References:

[1]燕 存,吉根林.Item-Based并行协同过滤推荐算法的设计与实现[J].南京师大学报(自然科学版),2014,37(01):71.
 Yan Cun,Ji Genlin.Design and Implementation of Item-Based Parallel Collaborative Filtering Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):71.
[2]孙鸿艳,吉根林.一种新的基于FP_Growth的频繁项目集并行挖掘算法[J].南京师大学报(自然科学版),2016,39(04):0.[doi:10.3969/j.issn.1001-4616.2016.04.005]
 Sun Hongyan,Ji Genlin.New Parallel Algorithm for Mining Frequent Item Sets Based on FP_Growth[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(01):0.[doi:10.3969/j.issn.1001-4616.2016.04.005]
[3]黄 刚,孙 媛.基于Hadoop平台的SPRINT算法的分析与研究[J].南京师大学报(自然科学版),2016,39(04):0.[doi:10.3969/j.issn.1001-4616.2016.04.006]
 Huang Gang,Sun Yuan.Analysis and Study of SPRINT Algorithm Based on Hadoop Platform[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(01):0.[doi:10.3969/j.issn.1001-4616.2016.04.006]

备注/Memo

备注/Memo:
收稿日期:2013-07-15.
基金项目:科技部国家中小企业创新基金(11C26213204533)、徐州市科技计划(XF11C052)、住房与城乡建设部科学技术计划(2011-K6-27).
通讯联系人:鞠训光,博士,副教授,研究方向:智能计算、数据挖掘、云计算.E-mail:375768447@qq.com
更新日期/Last Update: 2014-03-30