[1]李致远,朱求志,吴永焜,等.基于小波分析的无线传感网实时异常检测算法[J].南京师大学报(自然科学版),2014,37(01):87.
 Li Zhiyuan,Zhu Qiuzhi,Wu Yongkun,et al.Wavelet Analysis-Based Real-Time Anomaly Detection Algorithm for Wireless Sensor Network[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):87.
点击复制

基于小波分析的无线传感网实时异常检测算法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年01期
页码:
87
栏目:
计算机科学
出版日期:
2014-03-30

文章信息/Info

Title:
Wavelet Analysis-Based Real-Time Anomaly Detection Algorithm for Wireless Sensor Network
作者:
李致远朱求志吴永焜唐振宇胡华明
江苏大学计算机科学与通信工程学院,江苏 镇江 212013
Author(s):
Li ZhiyuanZhu QiuzhiWu YongkunTang ZhenyuHu Huaming
School of Computer Science and Telecommunication Engineering,Jiangsu University,Zhenjiang 212013,China
关键词:
无线传感器网络安全异常检测小波分析Hurst参数
Keywords:
wireless sensor networkssecurityanomaly detectionwavelet analysisHurst parameter
分类号:
TP393
文献标志码:
A
摘要:
异常检测技术能够检测到未知攻击,对于保障无线传感器网络安全具有重要意义.当前的异常检测技术实时性差,误报率高且计算量大,因此,无法直接应用在无线传感器网络中.鉴于此,提出基于小波分析的实时无线传感网异常检测(Wavelet Analysis-Based Real-time Anomaly Detection,WARAD)算法.在整个检测过程中,WARAD算法采用了逆向获取实时网络流量,然后通过对小尺度区间使用小波系数方差法计算Hurst值,从而提高异常检测的实时性、准确率,并降低求解Hurst值的运算复杂度.最后,在MeshIDE平台上实现了基于WARAD算法的异常检测系统,实验结果表明此算法极大地提高了无线传感网环境下异常检测的实时性,并降低了异常检测的误报率和漏报率.
Abstract:
Anomaly detection can detect new and unknown attacks,which has great significance on the wireless sensor networks security.Nowadays,the proposed anomaly detection schemes has poor real-time,high false positive rate and the large amount of computational overhead,and hence the schemes are not suitable for wireless sensor networks.In this paper,a wavelet analysis-based real-time anomaly detection(Wavelet Analysis-based Real-time Anomaly Detection,WARAD)algorithm for wireless sensor network is proposed.Throughout the detecting process,the WARAD algorithm reversely collects the real-time network traffic,and then uses the variance of the wavelet coefficients in the small-scale interval to compute the Hurst values,which can improve the real-time and the accuracy of anomaly detection,and reduce the computational complexity of solving the Hurst values.Finally,the WARAD algorithm-based intrusion detection system is implemented on the platform of MeshIDE.The experimental results showed that the proposed algorithm greatly improved the real-time of anomaly detection for wireless sensor networks,and reduced the false positive rate and the false negative rate of anomaly detection.

参考文献/References:

[1] Du Y,Yang S,Zhang R H.Design of an intrusion detection system for wireless sensor networks[J].Sensor Letters,2011,9(5):2 082-2 086.
[2]Huang J Y,Liao I E,Chung Y F,et al.Shielding wireless sensor network using Markovian intrusion detection system with attack pattern mining[J].Information Sciences,2013,231:32-44.
[3]傅蓉蓉,郑康锋,芦天亮,等.基于危险理论的无线传感器网络入侵检测模型[J].通信学报,2012,33(9):31-37.
[4]Yan K Q,Wang S C,Wang S S,et al.Hybrid intrusion detection system for enhancing the security of a cluster-based wireless sensor network[C]//Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology(ICCSIT’10).Chengdu:IEEE,2010:114-118.
[5]Sedjelmaci H,Feham M.Novel hybrid intrusion detection system for clustered wireless sensor network[J].International Journal of Network Security and Its Applications,2011,3(4):1-14.
[6]Bao F,Chen I R,Chang M J.Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection[J].IEEE Transactions on Network and Service Management,2012,9(2):169-183.
[7]Srikanth H,Shroff N B,Saurabh B.Secure neighbor discovery through overhearing in static multihop wireless networks[J].Computer Networks,2011,55(6):1 229-1 241.
[8]Liu B,Olivier D,Philippe N.Dynamic coverage of mobile sensor networks[J].IEEE Transactions on Parallel and Distributed Systems,2013,24(2):301-311.
[9]Gao J,Hu G,Yao X.Anomaly detection of network traffic based on wavelet packet[C]//Proceedings of the Asia-Pacific Conference on Communications.Busan,Korea:APCC,2006:1-5.

相似文献/References:

[1]张丽虹.无线传感网络改进混合移动代理路由的研究[J].南京师大学报(自然科学版),2012,35(04):145.
 Zhang Lihong.Study on Improved Hybrid Mobile Agent Routing in Wireless Sensor Networks[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):145.
[2]李 江,刘学军,章 玮.基于门限路由的源节点位置隐私保护协议[J].南京师大学报(自然科学版),2014,37(01):117.
 Li Jiang,Liu Xuejun,Zhang Wei.Threshold Routing for Source-Location Privacy Protection in Wireless Sensor Networks[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):117.
[3]徐晓菊,唐 翔,黄为勇.一种基于RSSI的煤矿井下WSN节点快速定位算法[J].南京师大学报(自然科学版),2014,37(04):158.
 Xu Xiaoju,Tang Xiang,Huang Weiyong.A Fast Node Localization Algorithm for Coal-mine UndergroundBased on RSSI[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):158.
[4]陈 璟,虞继敏.基于果蝇—广义回归神经网络优化的WSN节点定位算法[J].南京师大学报(自然科学版),2017,40(02):31.[doi:10.3969/j.issn.1001-4616.2017.02.006]
 Chen Jing,Yu Jimin.Node Localization Algorithm of WSN Based on Fruit Flies Optimizationand Generalized Regression Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):31.[doi:10.3969/j.issn.1001-4616.2017.02.006]

备注/Memo

备注/Memo:
收稿日期:2013-07-01.
基金项目:国家自然科学基金(61202474、61103195)、江苏省自然科学基金(BK20130528)、江苏大学高级专业人才科研启动
基金项目(12JDG049)、江苏大学本科生创新计划项目(2012075).
通讯联系人:李致远,博士,讲师,研究方向:无线传感器网络安全.E-mail:lizhiyuan81@126.com
更新日期/Last Update: 2014-03-30