[1]唐兴栋.SchrdingerHartree方程爆破解的存在性[J].南京师大学报(自然科学版),2014,37(02):33.
 Tang Xingdong.Blowup Solutions to the SchrdingerHartree Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(02):33.
点击复制

SchrdingerHartree方程爆破解的存在性()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年02期
页码:
33
栏目:
数学
出版日期:
2014-06-30

文章信息/Info

Title:
Blowup Solutions to the SchrdingerHartree Equation
作者:
唐兴栋
南京师范大学数学科学学院,江苏 南京 210023
Author(s):
Tang Xingdong
School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
薛定谔方程爆破变分刻画
Keywords:
Schrdinger equationblowupvariational characterization
分类号:
O175.29
文献标志码:
A
摘要:
本文研究了一类SchrdingerHartree方程,给出了爆破解的另外一种刻画.
Abstract:
In this paper,we study the blowup solutions for the nonlinear SchrdingerHartree equation,we give another characterization of the blowup solutions.

参考文献/References:

[1]Miao C,Xu G,Zhao L.Global wellposedness and scattering for the energycritical,defocusing Hartree Equation in R^(1+n)[J].Comm Partial Differential Equations,2010,36(5):729-776.
[2]Genev H,Venkov G.Soliton and singular solutions to the SchrodingerHartree equation[J].AIP Conference Proceedings,2010,1293:107.
[3]Ibrahim S,Masmoudi N,Nakanishi K.Scattering threshold for the focusing nonlinear KleinGordon equation[J].Analysis and PDE,2011,4(3):405-460.
[4]Cazenave T.Semilinear Schrodinger Equations[M].Providence:American Mathematical Society,2003.
[5]Genev H,Venkov G.Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential[J].Journal of Differential Equations,2011,251(2):420-438.
[6]Genev H,Venkov G.Soliton and blowup solutions to the timedependent SchrodingerHartree equation[J].Discrete and Continuous Dynamical Systems S,2012,5(5):903-923.
[7]Lieb E H,Loss M.Analysis[M].Providence:American Mathematical Society,2001.

相似文献/References:

[1]曹丽娜,刘 红.势垒中粒子波包的运动[J].南京师大学报(自然科学版),2013,36(03):37.
 Cao Lina,Liu Hong.Wave Packet Dynamics of Particles in Potential Barriers[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(02):37.
[2]骆 敏,程子恒,包建阳.电子在斐波那契量子阱结构中的能量性质[J].南京师大学报(自然科学版),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
 Luo Min,Cheng Ziheng,Bao Jianyang.Electronic Energy Properties of the Fibonacci Quantum Wells Structure[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(02):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
[3]洪明理,李林锐,黄代文.带有不定线性部分的薛定谔方程的多解存在性[J].南京师大学报(自然科学版),2021,44(03):9.[doi:10.3969/j.issn.1001-4616.2021.03.002]
 Hong Mingli,Li Linrui,Huang Daiwen.Multiple Solutions of a Schr?inger Equation with Indefinite Nonlinearity[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):9.[doi:10.3969/j.issn.1001-4616.2021.03.002]

备注/Memo

备注/Memo:
Received date:2013-03-06. Foundation item:Supported by the National Natural Science Foundation of China(10871096),the Project of Graduate Education Innovation of Jiangsu Province(CXLX13_367). Corresponding author:Tang Xingdong,Ph.D,majored in nonlinear functional analysis.E-mail:xdtang202@gmail.com
更新日期/Last Update: 2014-06-30