[1]贾苏慧,梅 华,邓海燕.新型纳米Ni催化剂催化氧化乙硫醇[J].南京师大学报(自然科学版),2014,37(03):67.
 Jia Suhui,Mei Hua,Deng Haiyan.Novel Ni Nanochains Catalyst for Catalytic Oxidation of Ethanethiol[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):67.
点击复制

新型纳米Ni催化剂催化氧化乙硫醇()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年03期
页码:
67
栏目:
化学
出版日期:
2014-09-30

文章信息/Info

Title:
Novel Ni Nanochains Catalyst for Catalytic Oxidation of Ethanethiol
作者:
贾苏慧12梅 华2邓海燕2
(1.南京信息职业技术学院计算机软件学院,江苏 南京 210023)(2.南京工业大学化学化工学院,江苏 南京 210009)
Author(s):
Jia Suhui12Mei Hua2Deng Haiyan2
(1.Institute of Computer & Software,Nanjing College of Information Technology,Nanjing 210023,China)(2.College of Chemistry and Chemical Engineering,Nanjing University of Technology,Nanjing 210009,China)
关键词:
Ni纳米链等离子体乙硫醇氧化催化效率
Keywords:
Ni nanochainsplasmaethanethiol oxidationcatalyst efficiency
分类号:
O643.36
文献标志码:
A
摘要:
在聚乙烯吡咯烷酮(PVP)存在下,通过小的纳米粒子自组装,我们合成了具有纳米尺度直径和微尺度长度的纳米链.通过等离子体将该Ni纳米链处理,去除覆盖在其表面的PVP.得到的样品通过TEM、EDX、XRD等表征.本文并对Ni纳米链氧化乙硫醇的催化性能进行评价,结果表明,经过等离子体处理过的Ni纳米链的催化氧化乙硫醇性能优于其他的NiO催化剂.此外,我们也研究了催化剂的重复性效果.纳米粒子表面的性质在制备及应用过程中的重要性在此得到了验证,这些结果进一步表明纳米技术在催化领域具有潜在应用价值.
Abstract:
Ni nanochains with diameters of nanoscale and lengths of microscale were synthesized by the assembly of small nanoparticles in the presence of a multidentate ligand poly(vinyl pyrrolidone)(PVP).Then the Ni nanochains were treated by plasma to remove PVP that coated onto the surface of Ni nanochains.The samples were characterized by Transmission Electron Microscopy(TEM),Energy Dispersive X-ray Spectroscopy(EDX)and X-ray diffraction(XRD).The catalytic performance of Ni nanochains for the oxidation of ethanethiol was evaluated and the results showed that the catalyst activity of Ni nanochains is better than those of other NiO catalysts.The repeated catalytic activity of catalysts for the oxidation of ethanethiol was also investigated.The importance of the surface properties of nanoparticles in operating functionalities was recognized.These results suggest that nanotechnology developed here has the potential application in the field of catalysis.

参考文献/References:

[1] Walther G,Cervera-Gontard L,Quaade U J,et al.Low temperature methane oxidation on differently supported 2 nm Au nanoparticles[J].Gold Bull,2009,42:13-19.
[2]Tang C L,Li L P,Gao H B,et al.Syntheses and catalytic performances of Ag-Ni bi-metals[J].J Power Sources,2009,188:397-403.
[3]Mei H,Hu M,Ma H X,et al.Preparation and characterization of NiO/MgO/Al2O3 supported CoPcS catalyst and its application to mercaptan oxidation[J].Fuel Process Tech,2007,88:343-348.
[4]Treguer-Delapierre M,Majimel J,Mornet S,et al.Synthesis of non-spherical gold nanoparticles[J].Gold Bull,2008,41:195-207.
[5]Protopapa M L.Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers:theoretical modelling[J].Appl Opt,2009,48:778-785.
[6]Khalavka Y,Sonnichsen C.Growth of gold tips onto hyperbranched CdTe nanostructures[J].Adv Mater,2008,20:588-591.
[7]Sun Y G,Xia Y N.Shape-controlled synthesis of gold and silver nanoparticles[J].Science,2002,298:2 176-2 179.
[8]Sau T K,Pal A,Jana N R,et al.Size controlled synthesis of gold nanoparticle using photochemically prepared seed particles[J].J Nanopart Res,2001(3):257-261.
[9]Chen L J,Li G S,Qi P,et al.Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals[J].J Therm Anal Calorim,2008,92(3):765-769.
[10]Gondal M A,Sayeed M N,Seddigi Z.Laser enhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst[J].J Hazard Mater,2008,155:83-89.
[11]Budarin V L,Diyuk V,Matzui L,et al.New prospective Ni-catalytic materials[J].J Therm Anal Calorim,2000,62:345-348.
[12]NuLi Y,Zhang P,Guo Z P,et al.Nanostructured NiO/C composite for lithium-ion battery anode[J].J Nanosci Nanotechno,2009(9):1 951-1 955.
[13]Varghese B,Reddy M V,Zhu Y W,et al.Fabrication of NiO nanowall electrodes for high performance lithium ion battery[J].Chem Mater,2008,20:3 360-3 367.
[14]Nam K W,Yoon W S,Kim K B.X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors[J].Electrochim Acta,2002,47:3 201-3 209.
[15]Wang X,Song J M,Gao L S,et al.Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres[J].Nanotechnology,2005,16:37-39.
[16]Lin C,Al-Muhtaseb S A,Ritter J A.Thermal treatment of sol-gel derived nickel oxide xerogels[J].J Sol-Gel Sci Technol,2003,28:133-141.
[17]Liu C M,Guo L,Wang R M,et al.Magnetic nanochains of metal formed by assembly of small nanoparticles[J].Doi:10.1039/B411311,J Chem Commun,2004:2 726-2 727.
[18]Zhu F,Kong E S W,Zhang J,et al.Surface modification of TiO2 nanoparticles through plasma polymerization of acrylic acid[J].Chem Phys Lett,2006,423:270-275.
[19]Lai T L,Liu J Y,Yong K F,et al.Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature[J].J Hazard Mater,2008,157:496-502.

相似文献/References:

[1]孔祥鲲,等.FDTD方法建模均匀非磁化等离子体计算效率的改进(英文)[J].南京师大学报(自然科学版),2008,31(01):62.
 Kong Xiangkun,An Li,Su Jun,et al.Improvement of Efficiency in FDTD Modeling of Homogeneous Unmagnetized Plasma[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(03):62.
[2]华正和,李晓卿.漂移波与电子相互作用方程的数值解[J].南京师大学报(自然科学版),2001,24(02):42.
 Hua Zhenghe,Li Xiaoqing.Numerical Solution of Interaction between Drift Wave and Electrons Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2001,24(03):42.
[3]林国华,张业荣,李 凯.垂直电偶极子在覆盖有等离子体的良导体上产生的电磁场的研究[J].南京师大学报(自然科学版),2014,37(03):54.
 Lin Guohua,Zhang Yerong,Li Kai.Electromagnetic Field in Air for a Vertical Electric Dipole overPerfect Conductor Coated with a Plasma Layer[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):54.

备注/Memo

备注/Memo:
收稿日期:2013-09-16.
基金项目:江苏省科技厅产学研前瞻性项目(BY2012033).
通讯联系人:梅华,副教授,研究方向:化学工程.E-mail:njmei608@sohu.com
更新日期/Last Update: 2014-09-30