[1]骆 敏,程子恒,包建阳.电子在斐波那契量子阱结构中的能量性质[J].南京师范大学学报(自然科学版),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
 Luo Min,Cheng Ziheng,Bao Jianyang.Electronic Energy Properties of the Fibonacci Quantum Wells Structure[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
点击复制

电子在斐波那契量子阱结构中的能量性质()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年03期
页码:
57
栏目:
·物理学·
出版日期:
2016-09-30

文章信息/Info

Title:
Electronic Energy Properties of the Fibonacci Quantum Wells Structure
文章编号:
1001-4616(2016)03-0057-05
作者:
骆 敏程子恒包建阳
南京林业大学理学院,南京林业大学物理教学实验中心,江苏 南京 210037
Author(s):
Luo MinCheng ZihengBao Jianyang
College of Science,Physics Teaching Lab,Nanjing Forestry University,Nanjing 210037,China
关键词:
斐波那契量子阱结构电子能级薛定谔方程
Keywords:
the Fibonacci quantum wells structureelectronic levelSchr?dinger equation
分类号:
O413.1
DOI:
10.3969/j.issn.1001-4616.2016.03.010
文献标志码:
A
摘要:
本文利用一维斐波那契量子阱结构模型推导了电子能级表达式. 在半导体材料的参数范围内,通过数值计算进一步研究了温度、势垒宽度、势垒高度对一维斐波那契量子阱结构的电子能级的影响.
Abstract:
The electronic energy expression [S22(E)] for one-dimensional Fibonacci quantum wells structure has been derived. For a selected range of parameters of semiconductor materials,the characteristics of the electronic level versus the well width have been calculated in numerical methods,and the influence of temperature and the height of the barrier on the curves of [S22(E)]-electronic energy has also been analyzed.

参考文献/References:

[1] ESAKI L,TSU R. Superlattice and negative differential conductivity in semiconductors[J]. IBM J Res Dev,1970,14(1):61-65.
[2] 黄和鸾. 半导体超晶格-材料与应用[M]. 沈阳:辽宁大学出版社,1992.
[3] AZIZ Z,BENTATA S,DJELTI R,et al. Suppression of the singularly localized states in dimer quasiperiodic Fibonacci superlattices[J]. Solid state communications,2010,150:865-869.
[4] DJELTI R,AZIZ Z,BENTATA S,et al. Resonant tunneling in GaAs/AlGa1As superlattices with aperiodic potential profiles[J]. Superlattices Microstruct,2011,50:659-666.
[5] MARTíNEZ-GUTIéRREZ D,VELASCO V R. Transverse acoustic waves in piezoelectric ZnO/MgO and GaN/AlN Fibonacci-periodic superlattices[J]. Surface science,2014,624:58-69.
[6] 骆敏,杨双波. 外场中多势垒结构的共振传输[J]. 南京师大学报(自然科学版),2012,35(4):34-40.
[7] MEGHOUFEL F Z,BENTATA S,TERKHI S,et al. Electronic transmission in non-linear potential profile of GaAs/AlGaAs based quantum well structure[J].Superlattices Microstruct,2013,57:115-122.
[8] EMINE O,YASIN O. Linear and nonlinear intersubband optical absorption coefficient and refractive index change in n-type δ-doped GaAs structure[J]. Opt Commun,2013,294:361-367.
[9] NGUYEN Q B,NGUYEN V H. The quantum acoustoelectric current in a doped superlattice GaAs:Si/GaAs:Be[J]. Superlattices Microstruct,2013,63:121-130.
[10] SATTARI F,FAIZABADI E. Spin transport and wavevector-dependent spin filtering through magnetic graphene superlattice[J]. Solid State Commun,2014,179:48-53.
[11] MERLIN R,BAJEMA K,CLARKE R,et al. Quasiperiodic GaAs-AIAs heterostructures[J]. Phys Rev Lett,1985,55(17):1?768-1 770.
[12] VASCONCELOS M S,MAURIZ P W,ALBUQUERQUE E L. Impurity binding energies in semiconductor Fibonacci superlattices[J]. Microelectronics journal,2003,34:503-505.
[13] VASCONCELOS M S,MAURIZ P W,ALBUQUERQUE E L,et al. Electronic spectra of GaAs/GaAlAs superlattice with impurities arranged according to a Fibonacci sequence[J]. Applied surface science,2004,234:33-37.
[14] ZHANG L W,FANG K,DU G Q,et al. Transmission properties of Fibonacci quasi-periodic one-dimensional photonic crystals containing indefinite metamaterials[J]. Optics communications,2011,284:703-706.
[15] VELASCO V R. Electronic properties of Fibonacci quasi-periodic heterostructures[J]. Phys Stat Sol(b),2002,232(1):71-75.
[16] VELASCO V R. Electronic properties of Fibonacci quasi-periodic heterostructures[J]. Microelectronics journal,2002,33:361-364.
[17] YAMINA S,ZOUBIR A,REDOUAN D,et al. Achievement of tailored laser frequencies by fine-tuning the structural parameters of Fibonacci’s in AlGaAs/GaAs superlattices[J]. Superlattices Microstruct,2013,62:233-241.
[18] ZHANG G G,YANG X B,LI Y H,et al. Optical transmission through multi-component generalized Thue-Morse superlattices[J]. Physica B,2010,405:3 605-3 610.
[19] LI F,YANG X B. Transmission of light through GF(m,n)multilayers[J]. Physica B,2005,368:64-69.
[20] BJ?RN J,SVERRE T E. Solving the Schr?dinger equation inarbitrary quantum-well potential profiles using the transfer matrix method[J]. IEEE J Quantum Electron,1990,26(11):2 025-2 035.
[21] ROBERT G. Elementary quantum mechanics in one dimension[M]. Baltimore:The Johns Hopkins University Press,2004.
[22] 骆敏,杨双波. 多势垒结构共振透射系数的计算[J]. 南京师大学报(自然科学版),2012,35(2):50-55.
[23] BASTARD G. Superlattice band structure in the envelope-function approximation[J]. Phys Rev B,1981,24(10):5 693-5 697.

备注/Memo

备注/Memo:
收稿日期:2015-10-12. 
基金项目:南京林业大学2015年度大学生创新训练计划项目(2015sjcx152). 
通讯联系人:骆敏,实验师,研究方向:量子阱和低维量子系统. E-mail:luominnj@126.com
更新日期/Last Update: 2016-09-30