[1]何文强,樊通声,王 巍.电容型磁阻抗效应的退磁因子影响研究[J].南京师范大学学报(自然科学版),2018,41(02):33.[doi:10.3969/j.issn.1001-4616.2018.02.007]
 He Wenqiang,Fan Tongsheng,Wang Wei.Effect of Demagnetizing Factor on CapacitiveType Magnetoimpedance Effect[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):33.[doi:10.3969/j.issn.1001-4616.2018.02.007]
点击复制

电容型磁阻抗效应的退磁因子影响研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年02期
页码:
33
栏目:
·物理学·
出版日期:
2018-06-30

文章信息/Info

Title:
Effect of Demagnetizing Factor on CapacitiveType Magnetoimpedance Effect
文章编号:
1001-4616(2018)02-0033-06
作者:
何文强1樊通声1王 巍12
(1.南京师范大学物理科学与技术学院,江苏 南京 210023)(2.近代声学教育部重点实验室,南京大学,江苏 南京 210093)
Author(s):
He Wenqiang1Fan Tongsheng1Wang Wei12
(1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)(2.Laboratory of Modern Acoustics of MOE,Nanjing University,Nanjing 210093,China)
关键词:
退磁因子磁电复合振子磁阻抗谐振频率反谐振频率
Keywords:
demagnetization factormagnetoelectric composite oscillatormagnetoimpedanceresonance frequencyanti-resonance frequency
分类号:
O441.6; O482.52+6
DOI:
10.3969/j.issn.1001-4616.2018.02.007
文献标志码:
A
摘要:
研究了室温下磁致伸缩材料的退磁因子对磁电复合振子磁阻抗效应的影响. 设计了长方体和四方体两种磁致伸缩板与相同压电板构成磁电复合振子,在磁电复合振子谐振和反谐振频率下,研究了退磁因子对其磁阻抗、磁电容、磁电感的影响. 在谐振频率下,磁电复合振子的阻抗、电容、电感随磁场的变化趋势基本相似,但磁致伸缩为长方体时,磁电复合振子的阻抗、电容、电感达到饱和所需磁场明显小于磁致伸缩为四方体的复合振子达到饱和所需磁场. 在反谐振频率下,退磁因子对阻抗和电感随磁场变化的影响与谐振频率基本相同,但退磁因子对磁电容的影响行为明显不同,四方体的磁电复合振子电容在H=1 600 Oe和H=1 700 Oe之间出现震荡,磁电容高达44 000%,而长方体复合振子没有振荡现象. 从磁学的观点,理论分析了退磁因子对磁电复合振子磁阻抗效应的影响,该研究为磁场传感器在低磁场探测方面提供了实验及理论基础.
Abstract:
The influence of the magnetostriction materials demagnetization factor at room temperature on the magnetoimpedance effect of magnetoelectric composite oscillator is presented. Rectangular TDF and square TDF combine with the same piezoelectric PZT designed to form a magnetic composite oscillator,respectively. We compare the influence of demagnetization factor on magnetoimpedance,magnetocapacitance and magnetoinductance at resonance and anti-resonance frequencies. It was found that the variation of impedance,capacitance and inductance are basically similar with a dc magnetic field at resonance frequency. However,when the magnetostriction plate is rectangular,the impedance,capacitance and inductance of the magnetoelectric composite vibrator reaching to saturation required less magnetic fields than that of magnetostriction plate which is square. In the anti-resonance frequency,the influence of the demagnetization factor on the impedance and inductance varying with the magnetic field is basically same as that of resonance frequency except for capacitance. When the magnetostriction plate is square,the magnetoelectric composite oscillator capacitance fluctuates with the magnetic field intensity between 1 600 Oe and 1 700 Oe at anti-resonance frequency,and the magnetocapacitance is up to 44 000%. Considering magnetism,the effect of demagnetization factor on magnetoimpedance is analyzed theoretically. The study provides experimental and theoretical basis for magnetic field sensors in low magnetic detection.

参考文献/References:

[1] DONG S X,ZHAI J Y,LI J F,et al. Magnetoelectric effect in Terfenol-D/Pb(Zr,TiO)3/μ-metal laminate composites[J]. Applied physics letters,2006,89:122903(1-3).
[2]ZHAI J Y,XING Z P,DONG S X,et al,Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature[J]. Applied physics letters,2006,88:062510(1-3).
[3]WU T L,HUANG J H. Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases[J]. International journal of solids and structures,2000,37(21):2981-3009.
[4]KUMARIM,DIESTRA D G B,KATIYAR R,et al. Observation of strong magnetoelectric coupling and ferromagnetism at room temperature in Fe substituted ferroelectric BaZr0.05Ti0.95O3 thin films[J]. Journal of applied physics,2017,121(3):034101.
[5]DONG S X,LI J F,VIEHLAND D. Voltage gain effect in a ring-type magnetoelectric laminate[J]. Applied physics letters,2004,84(21):4188-4190.[6]NAN T X,HUI Y,RINALDI M,et al. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection[J]. Scientific reports,2013,3:1985-1990.
[7]WANG W,YE J J,WU J,et al. Size effects in strip-ring piezoelectric/magnetostrictive structures observed in magnetically tuned resonance frequency[J]. Sensors and actuators A:physical,2014,214:219-224.
[8]POLZIKOVA N,ALEKSEEV S,KOTELYANSKII I,et al. Magnetic field tunable acoustic resonator with ferromagnetic-ferroelectric layered structure[J]. Journal of applied physics,2013,113:17C704(1-3).
[9]FANG X,ZHANG N,WANG Z L. Converse magnetoelectric effects on heterotype electrostrain piezopermeability composites[J]. Applied physics letters,2008,93(10):102503(1-3).
[10]LOU J,REED D,LIU M,et al. Electrostatically tunable magnetoelectric inductors with large inductance tunability[J]. Applied physics letters,2009,94(11):112508(1-3).
[11]USOV N A,GUDOSHNIKOV S A. Giant magneto-impedance effect in amorphous ferromagnetic wire with a weak helical anisotropy:theory and experiment[J]. Journal of applied physics,2013,113(24):243902(1-10).
[12]MANDAL K,MANDAL S P,VAZQUEZ M,et al,Giant magnetoimpedance effect in a positive magnetostrictive glass-coated amorphous microwire[J]. Physical review B,2002,65:064402(1-6).
[13]MAGLIONEM,ZHU W,WANG Z H. Evidence of a strong magnetic effect on the impedance of integrated piezoelectric resonators[J]. Applied physics letters,2005,87(9):092904(1-3).
[14]RAMACHANDRAN B,SUDARSHAN N,RAO M S R. Magnetoimpedance and magnetodielectric properties of single phase 45PMN-20PFW-35PT ceramics[J]. Journal of Applied Physics,2010,107(9):09C503(1-3).
[15]JIA Y,ZHENG C,WU Z,et al. Enhanced magneto-impedance in Fe73.5Cu1Nb3Si13.5B9 ribbons from laminating with magnetostrictive terfenol-D alloy plate[J]. Applied physics letters,2012,101(25):251914(1-4).
[16]KOTAGIRI G,RAMARAO S D,MARKANDEYULU G. Magnetoimpedance studies on laser and microwave annealed Fe 66 Ni 7 si 7 B 20 ribbons[J]. Journal of magnetism and magnetic materials,2015,382:43-48.
[17]CASTEL V,BROSSEAUC,YOUSSEF J B. Magnetoelectric effect in BaTiO3/Ni particulate nanocomposites at microwave frequencies[J]. Journal of applied physics,2009,106(6):064312(1-15).
[18]BROSSEAU C,CASTEL V,POTEL M. Controlled extrinsic magnetoelectric coupling in BaTiO3/Ni nanocomposites:effect of compaction pressure on interfacial anisotropy[J]. Journal of applied physics,2010,108(2):024306(1-8).
[19]ERWAN S,PATRICK Q,GéRARD T,et al. Correlation between magnetic properties of layered ferromagnetic/dielectric material and tunable microwave device applications[J]. J Appl Phys,2002,91:5449-5455.
[20]BIAN L X,WEN Y M,LI P. Analysis of magneto-mechano-electronic coupling factors in magnetostrictive/piezoelectric laminated composite[J]. Acta Phys Sin,2009,58(6):4205-4213.
[21]BROWN W F. Magnetostatic principles in ferromagnetism[M]. Amsterdam:North-Holland Publishing Company,1962.
[22]潘德安,陆俊,白洋,等. 形状退磁因子对层状磁电复合材料的影响[J]. 科学通报,2008,53(10):1167-1171.
[23]WANG W,WANG Z F,LUO X B,et al. Capacitive type magnetoimpedance effect in piezoelectric-magnetostrictive composite resonator[J]. Applied physics letters,2015,107:172904(1-5).
[24]王巍,罗小彬,杨丽洁,等. 层状磁电复合材料谐振频率下的巨磁电容效应[J]. 物理学报,2011,60(10):107702(1-7).
[25]WANG W,YE J J,WU J,et al. Single dc magnetic field tunable electromechanical resonance in Terfenol-D/PZT/Terfenol-D trilayer composites[J]. Journal of magnetism and magnetic materials,2014,366:40-43.
[26]CLARK A E,FOGLE M W. A new method of magnetostrictivity and magnetostriction measurement[J]. IEEE Trans Magn,1989,25:3611-3613.
[27]WU G J,NAN T X,ZHANG N,et al. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance[J]. Applied physics letters,2013,103:182905(1-5).

相似文献/References:

[1]汪志峰,何文强,王 巍.磁电复合振子PbZr0.48Ti0.52O3/Tb0.3Dy0.7Fe1.92的电容型磁阻抗效应[J].南京师范大学学报(自然科学版),2016,39(03):40.[doi:10.3969/j.issn.1001-4616.2016.03.007]
 Wang Zhifeng,He Wenqiang,Wang Wei.Capacitive Type Magnetoimpedance Effect of PbZr0.48Ti0.52O3/Tb0.3Dy0.7Fe1.92 in Magnetoelectric Composite Vibrator[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(02):40.[doi:10.3969/j.issn.1001-4616.2016.03.007]

备注/Memo

备注/Memo:
收稿日期:2018-02-10.
基金项目:江苏省研究生科研与实践创新计划项目(KYCX17_1058).
通讯联系人:王巍,教授,研究方向:复合材料磁电效应. E-mail:wangwei1@njnu.edu.cn
更新日期/Last Update: 2018-11-06