参考文献/References:
[1] WANG J J,ZHU S,GONG Y. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern recognition letters,2010,31(1):1-10.
[2]KURSUN O,FAVOROV O. Single-frame super resolution by inference from learned features[J]. Istanbul university journal of electrical and electronics engineering,2003,3(1):673-681.
[3]KATSUKI T,TORII A,INOUE M. Posterior-mean super-resolution with a causal Gaussian Markov random field prior[J]. IEEE transactions on image processing,2012,21(7):3182-3193.
[4]TANG Y,YAN P K,YUAN Y,et al. Single-image super-resolution via local learning[J]. International journal of machine learning and cybernetics,2011,2(1):15-23.
[5]GAO X B,ZHANG K B,TAO D C,et al. Image super-resolution with sparse neighbor embedding[J]. IEEE transactions on image processing,2012,21(7):3194-3205.
[6]BABACAN S D,MOLINA R,KATSAGGELOS A K. Variational bayesian super resolution[J]. IEEE transactions on image processing,2011,20(4):984-999.
[7]YANG J C,WRIGHT J,HUANG T,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on image processing,2010,19(11):2861-2873.
[8]FREEMAN W T,JONES T R,PASZTOR E C. Example-based superresolution[J]. IEEE computer graphics and applications,2002,22(2):56-65.
[9]TRINH D H,LUONG M,DIBOS F,et al. Novel example-based method for super-resolution and denoising of medical images[J]. IEEE transactions on image processing,2014,23(4):1882-1895.
[10]JEONG S,YOON I,JEON J,et al. Multi-frame example-based super-resolution using locally directional self-similarity[C]//Proc of IEEE International Conference on Consumer Electronics,LV:IEEE,2015:631-632.
[11]VAPNIK V. Statistical learning theory[M]. New York:John Wiley and Sons,1998.
[12]WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error measurement to structural similarity[J]. IEEE Transactions on image processing,2004,13(4):600-612.
[13]梅树立. 基于变分法和剪切波耦合算法的蝗虫切片保纹理图像降噪[J]. 农业工程学报,2016,32(17):152-159.
[14]朱志刚,林学訚,石定机. 数字图像处理[M]. 北京:电子工业出版社,2011.
[15]汤嘉立,左健民,黄陈蓉. 基于SVM预分类学习的图像超分辨率重建算法[J]. 计算机应用研究,2012,29(8):3151-3175.
[16]张卫国,李景妹. 改进的基于纹理特征的图像配准算法[J]. 计算机工程与应用,2016,52(6):214-218.
[17]曹杨,李晓光,王素玉,等. 基于预分类学习的超分辨率复原算法[J]. 数据采集与处理,2009,24(4):514-518.
[18]柳益君,朱广萍,钱进,等. 基于支持向量机的绿色战略选择模型研究[J]. 计算机仿真,2010,27(11):307-310.
相似文献/References:
[1]朱志宾,丁世飞.基于TWSVM的图像分类[J].南京师范大学学报(自然科学版),2014,37(03):8.
Zhu Zhibin,Ding Shifei.Image Classification Based on Twin Support Vector Machines[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):8.
[2]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师范大学学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[3]寇振宇,杨绪兵,张福全,等.L1范数最大间隔分类器设计[J].南京师范大学学报(自然科学版),2018,41(04):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]
Kou Zhenyu,Yang Xubing,Zhang Fuquan,et al.Design of L1 Norm Maximum Margin Classifier[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]