[1]汤嘉立,朱广萍,杜卓明.支持向量机多特征分类学习的超分辨率复原[J].南京师范大学学报(自然科学版),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
 Tang Jiali,Zhu Guangping,Du Zhuoming.Super-resolution Restoration Algorithm Based onSVM Multi-figure Classification Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
点击复制

支持向量机多特征分类学习的超分辨率复原()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年03期
页码:
28
栏目:
·人工智能算法与应用专栏·
出版日期:
2018-09-30

文章信息/Info

Title:
Super-resolution Restoration Algorithm Based onSVM Multi-figure Classification Learning
文章编号:
1001-4616(2018)03-0028-07
作者:
汤嘉立1朱广萍1杜卓明12
(1.江苏理工学院计算机工程学院,江苏 常州 213001)(2.南京师范大学数学科学学院,江苏 南京 210023)
Author(s):
Tang Jiali1Zhu Guangping1Du Zhuoming12
(1.College of Computer Engineering,Jiangsu University of Technology,Changzhou 213001,China)(2.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
关键词:
超分辨率复原支持向量机多特征分类样本学习
Keywords:
super-resolution restorationsupport vector machinemulti-figure classificationsample learning
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2018.03.005
文献标志码:
A
摘要:
支持向量机(SVM)单一特征分类学习的超分辨率复原算法通过离线建立分类模型和减少样本库规模,降低了传统基于范例学习算法的样本块误匹配情况,增强了图像质量和计算速度. 但由于图像特征的多样性,此类算法易造成复原结果的不稳定. 本文给出一种以支持向量机多特征分类学习为基础的复原算法,将图像对应的颜色和纹理分类信息存储在样本库中,经过预分类筛选出样本子集,在高频预测时段直接从多特征相似的样本子集里实施准确的匹配检索. 实验结果表明,相比于传统算法,本文算法的PSNR和SSIM值均有了一定提升,进一步精确匹配了低分辨率图像样本库,提高了复原效果.
Abstract:
The SVM pre-classified super-resolution algorithm is based on single image feature and builds off-line disaggregated models. It reduces the mis-matching of tranditional example-based restoration algorithms,improves the image quality and running speed. However,the SVM-based algorithm easily leads to unstable recovered results because of the diversity of image features. For such problems,we propose a super-resolution restoration algorithm based on multi-figure classification learning. The algorithm saves the corresponding color-texture information into the sample set and selects object subset by SVM pre-classified learning. Then in the high frequency prediction process it makes precise matching search from the subset of sample database which has similar color and texture features with the object image. Experimental results show that compared with traditional algorithms,PSNR and SSIM are improved respectively. In addition,the proposed algorithm further reduces the matching range of low resolution image blocks and promotes the restoration effectiveness.

参考文献/References:

[1] WANG J J,ZHU S,GONG Y. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern recognition letters,2010,31(1):1-10.
[2]KURSUN O,FAVOROV O. Single-frame super resolution by inference from learned features[J]. Istanbul university journal of electrical and electronics engineering,2003,3(1):673-681.
[3]KATSUKI T,TORII A,INOUE M. Posterior-mean super-resolution with a causal Gaussian Markov random field prior[J]. IEEE transactions on image processing,2012,21(7):3182-3193.
[4]TANG Y,YAN P K,YUAN Y,et al. Single-image super-resolution via local learning[J]. International journal of machine learning and cybernetics,2011,2(1):15-23.
[5]GAO X B,ZHANG K B,TAO D C,et al. Image super-resolution with sparse neighbor embedding[J]. IEEE transactions on image processing,2012,21(7):3194-3205.
[6]BABACAN S D,MOLINA R,KATSAGGELOS A K. Variational bayesian super resolution[J]. IEEE transactions on image processing,2011,20(4):984-999.
[7]YANG J C,WRIGHT J,HUANG T,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on image processing,2010,19(11):2861-2873.
[8]FREEMAN W T,JONES T R,PASZTOR E C. Example-based superresolution[J]. IEEE computer graphics and applications,2002,22(2):56-65.
[9]TRINH D H,LUONG M,DIBOS F,et al. Novel example-based method for super-resolution and denoising of medical images[J]. IEEE transactions on image processing,2014,23(4):1882-1895.
[10]JEONG S,YOON I,JEON J,et al. Multi-frame example-based super-resolution using locally directional self-similarity[C]//Proc of IEEE International Conference on Consumer Electronics,LV:IEEE,2015:631-632.
[11]VAPNIK V. Statistical learning theory[M]. New York:John Wiley and Sons,1998.
[12]WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error measurement to structural similarity[J]. IEEE Transactions on image processing,2004,13(4):600-612.
[13]梅树立. 基于变分法和剪切波耦合算法的蝗虫切片保纹理图像降噪[J]. 农业工程学报,2016,32(17):152-159.
[14]朱志刚,林学訚,石定机. 数字图像处理[M]. 北京:电子工业出版社,2011.
[15]汤嘉立,左健民,黄陈蓉. 基于SVM预分类学习的图像超分辨率重建算法[J]. 计算机应用研究,2012,29(8):3151-3175.
[16]张卫国,李景妹. 改进的基于纹理特征的图像配准算法[J]. 计算机工程与应用,2016,52(6):214-218.
[17]曹杨,李晓光,王素玉,等. 基于预分类学习的超分辨率复原算法[J]. 数据采集与处理,2009,24(4):514-518.
[18]柳益君,朱广萍,钱进,等. 基于支持向量机的绿色战略选择模型研究[J]. 计算机仿真,2010,27(11):307-310.

相似文献/References:

[1]朱志宾,丁世飞.基于TWSVM的图像分类[J].南京师范大学学报(自然科学版),2014,37(03):8.
 Zhu Zhibin,Ding Shifei.Image Classification Based on Twin Support Vector Machines[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):8.
[2]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师范大学学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
 Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[3]寇振宇,杨绪兵,张福全,等.L1范数最大间隔分类器设计[J].南京师范大学学报(自然科学版),2018,41(04):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]
 Kou Zhenyu,Yang Xubing,Zhang Fuquan,et al.Design of L1 Norm Maximum Margin Classifier[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]

备注/Memo

备注/Memo:
收稿日期:2018-04-16.
基金项目:国家自然科学基金(61402206)、中国博士后科学基金(2016M601845)、住房城乡建设部研究开发项目(2016-K8-028).
通讯联系人:汤嘉立,博士,副教授,研究方向:图像处理、模式识别. E-mail:tangjl@jsut.edu.cn
更新日期/Last Update: 2018-11-19