[1]张 杰,杨忠林,黄鹤勇,等.氧化石墨烯固定Ag3PO4光催化降解染料罗丹明的机理研究[J].南京师范大学学报(自然科学版),2018,41(03):65.[doi:10.3969/j.issn.1001-4616.2018.03.011]
 Zhang Jie,Yang Zhonglin,Huang Heyong,et al.Study on Degradation of Rhodamine by Graphite Oxide-Ag3PO4[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):65.[doi:10.3969/j.issn.1001-4616.2018.03.011]
点击复制

氧化石墨烯固定Ag3PO4光催化降解染料罗丹明的机理研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年03期
页码:
65
栏目:
·化学·
出版日期:
2018-09-30

文章信息/Info

Title:
Study on Degradation of Rhodamine by Graphite Oxide-Ag3PO4
文章编号:
1001-4616(2018)03-0065-05
作者:
张 杰1杨忠林2黄鹤勇1孟祥天1黄钰彪1
(1.南京师范大学分析与测试中心,江苏 南京 210023)(2.中石化南京化工研究院有限公司,江苏 南京 210048)
Author(s):
Zhang Jie1Yang Zhonglin2Huang Heyong1Meng Xiangtian1Huang Yubiao1
(1.Center of Analysis and Testing,Nanjing Normal University,Nanjing 210023,China)(2.Research Institute of Nanjing Chemical Industry Co.,Ltd SINOPEC,Nanjing 210048,China)
关键词:
氧化石墨烯Ag3PO4可见光罗丹明B
Keywords:
graphite oxideAg3PO4visible lightrhodamine B
分类号:
O643.3
DOI:
10.3969/j.issn.1001-4616.2018.03.011
文献标志码:
A
摘要:
采用氧化石墨烯(GO)固定Ag3PO4,制备了一系列Ag3PO4-GO(0.5%),Ag3PO4-GO(1%),Ag3PO4-GO(1.5%),Ag3PO4-GO(2%)等复合光催化剂,并作为光催化剂降解染料罗丹明B,研究结果表明:GO固载的Ag3PO4催化剂的禁带宽度约为2.39 eV,并未受到GO显著影响. 在可见光照射下,GO的含量对催化效果有影响,GO含量约1%时,具有最佳的光催化转化效率. 溶液为中性(pH=7)或弱酸性(pH=5)时的光催化效果最佳,并且溶液的浓度越低光催化的速率越快. GO固定的催化剂Ag3PO4-GO(1%)能够促进光生电子的产生,从而显著提高了催化剂的活性和催化稳定性.
Abstract:
The objective of this investigation was to synthesize the graphite oxide-Ag3PO4(Ag3PO4-GO)composite and study its degradation properties of rhodamine(RhB). Therefore,a series of visible-light-driven GO-Ag3PO4catalysts with different GO contents,mainly including Ag3PO4-GO(0.5%),Ag3PO4-GO(1%),Ag3PO4-GO(1.5%)and Ag3PO4-GO(2%),was successfully synthesized and applied for degradation of RhB. The results showed that the band gap was approximately 2.39 eV,which was not affected by the addition of GO. Furthermore,the catalyst,Ag3PO4-GO(1%),showed the best photocatalytic activity with a pH range from 5 to 7. Additionally,the degradation rates correlated negatively with the initial concentrations of RhB. Ag+on the GO surfaces might capture photoelectron e-,which would favor Ag3PO4 to separate e- and h+ under visible light irradiation,and significantly enhanced the photocatalytic activity and stability.

参考文献/References:

[1] ZHENG Y M,YUNUS R F,NANAYAKKARA K G N,et al. Electrochemical decoloration of synthetic wastewater containing rhodamine:behaviors and mechanism[J]. Industrial and engineering chemistry research,2012,51(17),5953-5960.
[2]AND T A,MADRAS G. Photocatalytic degradation of rhodamine dyes with nano-TiO2[J]. Industrial and engineering chemistry research,2007,46(1):1-7.
[3]戴兴春,徐亚同,黄民生. 污染环境中微生物修复的几种办法[J]. 上海化工,2004,29(1):10-12.
[4]裴红玉,李云青,祁凡,等. 磷酸银系复合光催化剂研究进展[J]. 广州化工,2016,44(22):3-5.
[5]DHANABAL R,CHITHAMBARARAJ A,VELMATHI S,et al. Visible light driven degradation of methylene blue dye using Ag3PO4[J]. Journal of environmental chemical engineering,2015,3(3):1872-1881.
[6]BI Y P,HU H Y,OUYANG S X,et al. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges.[J]. Cheminform,2012,43(29):3748-3750.
[7]JIAO Z B,ZHANG Y,YU H C,et al. Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties[J]. Chemical communications,2013,49(6):636-638.
[8]BI Y P,HU H Y,JIAO Z B,et al. Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties[J]. Physical chemistry chemical physics pccp,2012,14(42):14486-14488.
[9]MA X G,YAN J,LIU N,et al. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111)surface[J]. Journal of semiconductors,2016,37(3):26-31.
[10]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films.[J]. Science,2004,306(5696):666-669.
[11]GE M. Photodegradation of rhodamine B and methyl orange by Ag3PO4 catalyst under visible light irradiation[J]. Chinese journal of catalysis,2014,35(8):1410-1417.
[12]CHEN X J,DAI Y Z,WANG X Y,et al. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide(GO)for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation[J]. Journal of hazardous materials,2015,292:9-18.
[13]TALYZIN A V,MERCIER G,KLECHIKOV A,et al. Brodie vs Hummers graphite oxides for preparation of multi-layered materials[J]. Carbon,2017,115:430-440.
[14]余长林,魏龙福,李家德,等. GO/Ag3PO4复合光催化剂的制备、表征及光催化性能[J]. 物理化学学报,2015,31(10):1932-1938.
[15]LIU B,FANG Y L,LI Z Y,et al. Visible-light nanostructured photocatalysts—a review.[J]. Journal of nanoscience and nanotechnology,2015,15(2):889-920.
[16]YAHIA I S,JILANI A,ABDEL-WAHAB M S,et al. The photocatalytic activity of graphene oxide/Ag3PO4,nano-composite:loading effect[J]. Optik-international journal for light and electron optics,2016,127(22):10746-10757.
[17]LIANG Q H,SHI Y,MA W J,et al. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets[J]. Physical chemistry chemical physics pccp,2012,14(45):15657-15665.
[18]吕英英,顾晓天,周家宏,等. N、S共掺杂型二氧化钛光催化降解有机污染物的性能研究[J]. 南京师大学报(自然科学版),2008,31(4):69-73.
[19]WANG P Q,CHEN T,YU B Y,et al. Tollen’s-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability[J]. Journal of the Taiwan institute of chemical engineers,2016,62:267-274.

相似文献/References:

[1]王世娟,朱超云,宋伟,等.基于酪氨酸酶-氧化石墨烯的生物传感器的制备及应用[J].南京师范大学学报(自然科学版),2011,34(03):79.
 Wang Shijuan,Zhu Chaoyun,Song Wei,et al.Fabrication of Biosensor Based on Tyrosinase-Graphene Oxide and Its Application[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(03):79.

备注/Memo

备注/Memo:
收稿日期:2017-12-28.
基金项目:国家自然科学基金(41501239).
通讯联系人:杨忠林,博士,高级工程师,研究方向:有机污染物废水的催化转化与降解. E-mail:yangzl.nhgs@sinopec.com
更新日期/Last Update: 2018-11-19