[1]徐 茜,赵 烨,杨玉洁.Lotka-Volterra交错扩散方程组平衡解的局部渐近稳定性[J].南京师范大学学报(自然科学版),2018,41(04):7.[doi:10.3969/j.issn.1001-4616.2018.04.002]
 Xu Qian,Zhao Ye,Yang Yujie.Stability of Steady State Solution for a Lotka-VolterraModel with Cross Diffusion[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(04):7.[doi:10.3969/j.issn.1001-4616.2018.04.002]
点击复制

Lotka-Volterra交错扩散方程组平衡解的局部渐近稳定性()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年04期
页码:
7
栏目:
·数学与计算机科学·
出版日期:
2018-12-31

文章信息/Info

Title:
Stability of Steady State Solution for a Lotka-VolterraModel with Cross Diffusion
文章编号:
1001-4616(2018)04-0007-05
作者:
徐 茜1赵 烨2杨玉洁1
(1.北京联合大学基础部,北京 100101)(2.北京石油化工学院数理系,北京 102617)
Author(s):
Xu Qian1Zhao Ye2Yang Yujie1
(1.Department of Basic Courses,Beijing Union University,Beijing 100101,China)(2.Department of Mathematics and Physics,Beijing Institute of Petrolchemical Technology,Beijing 102617,China)
关键词:
分岔解谱分析稳定性
Keywords:
bifurcating solutionspectral analysisstability
分类号:
O175.2
DOI:
10.3969/j.issn.1001-4616.2018.04.002
文献标志码:
A
摘要:
本文主要研究在空间异质环境下一个Lotka-Volterra带交错扩散项的方程组. 通过细致的谱分析和线性化稳定性理论,证明了该Lotka-Volterra交错扩散方程组的分岔平衡解是局部渐近稳定的.
Abstract:
We investigate a Lotka-Volterra model with cross diffusion in a spatially heterogeneous environment. Through the detailed spectral analysis and linearized stability theory,we prove that the bifurcating solution of the Lotka-Volterra system with cross diffusion is locally asymptotically stable.

参考文献/References:

[1] KUTO K. Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment[J]. Nonlinear analysis:real world applications,2009,10:943-965.
[2]SHIGESADA N,KAWASAKI K,TERAMOTO E. Spatial segregation of interacting species[J]. J Theoret Biol,1979,79:83-99.
[3]NI W M,WU Y P,XU Q. The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion[J]. Discrete Contin Dyn Syst,2014,34:5271-5298.
[4]WANG L,WU Y P,XU Q. Instability of spiky steady states for S-K-T biological competing model with cross-diffusion[J]. Nonlinear analysis,2017,159:424-457.
[5]WU Y P,XU Q. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion[J]. Discrete Contin Dyn Syst,2011,29:367-385.
[6]DU Y,PENG R,WANG M. Effect of a protection zone in the diffusive Leslie predator-prey model[J]. J differential equations,2009,246:3932-3956.
[7]DU Y,SHI J P. A diffusive predator-prey model with a protection zone[J]. J differential equations,2006,229:63-91.
[8]DU Y,SHI J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environment[J]. Fields Inst Comm,2006,48:1-41.
[9]HUTSON V,LOU Y,Mischaikow K. Convergence in competition models with small diffusion coefficients[J]. J differential equations,2005,211:135-161.
[10]LI W T,WANG Y X,ZHANG J F.Stability of positive stationary solutions to a spatially heterogeneous cooperative system with cross-diffusion[J]. Electro J Differ Equ,2012,223:1-18.
[11]SHI J P. Persistence and bifurcation of degenerate solutions[J]. J Funct Anal,1999,169:494-531.
[12]KIELH?FER H. Bifurcation theory—an introduction with applications to PDEs[M]. New York:Springer-Verlag,2004.

备注/Memo

备注/Memo:
收稿日期:2018-02-16.
基金项目:国家自然科学基金(11501031、11471221、11601030).
通讯联系人:徐茜,博士,副教授,研究方向:交错扩散方程. E-mail:xuqian098@163.com
更新日期/Last Update: 2018-12-30