参考文献/References:
[1] SZEGEDY C,TOSHEV A,ERHAN D. Deep neural networks for object detection[C]//International Conference on Neural Information Processing Systems. USA:MIT Press,2013,26:2553-2561.
[2]SERMANET P,EIGEN D,ZHANG X,et al. OverFeat:integrated recognition,localization and detection using convolutional networks[J]. Eprint Arxiv,2013:1312.6229.
[3]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems. Canada:MIT Press,2015:91-99.
[4]DAI J,LI Y,HE K,et al. R-FCN:Object detection via region-based fully convolutional networks[J]. Eprint Arxiv,2016:1605.06409.
[5]HE K,GKIOXARI G,DOLLáR P,et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision. Italy:IEEE,2017:2980-2988.
[6]LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Computer Vision-ECCV 2016. Amsterdam,the Netherlands:Springer International Publishing,2016:21-37.
[7]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Computer Vision and Pattern Recognition. USA:IEEE,2016:779-788.
[8]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA:IEEE Computer Society,2014:580-587.
[9]SANDLER M,HOWARD A,ZHU M,et al. MobileNetV2:inverted residuals and linear bottlenecks[J]. Eprint Arxiv,2018.
[10]GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision. USA:IEEE Computer Society,2015:1440-1448.
[11]REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition. Italy:IEEE Computer Society,2017:6517-6525.
[12]REDMON J,FARHADI A. YOLOv3:an incremental improvement[J]. Eprint Arxiv,2018:104.02767.
[13]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA:IEEE Computer Society,2016:770-778.
[14]LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Italy:IEEE Computer Society,2017:936-944.
[15]WONG A,SHAFIEE M J,LI F,et al. Tiny SSD:a tiny single-shot detection deep convolutional neural network for real-time embedded object detection[C]//Conference on Computer and Robot Vision. Foronto:IEEE,2018(15):95-101.
[16]IANDOLA F N,HAN S,MOSKEWICZ M W,et al. SqueezeNet:AlexNet-level accuracy with 50×fewer parameters and<0.5 MB model size[J]. Eprint Arxiv,2016:1602.07360.
[17]EVERINGHAM M. The PASCAL visual object classes challenge[J]. Lecture notes in computer science,2005,111(1):98-136.
[18]CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Italy:IEEE Computer Society,2017:1800-1807.
[19]HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. Eprint Arxiv,2017.
[20]GEIGER A,LENZ P,URTASUN R. Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA:IEEE Computer Society,2012:3354-3361.
[21]GEIGER A,LENZ P,STILLER C,et al. Vision meets robotics:the KITTI dataset[J]. International journal of robotics research,2013,32(11):1231-1237.
[22]LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
[23]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Leoorning Representations. USA:IEEE,2014.
[24]GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision. USA:IEEE Computer Society,2015:1440-1448.
[25]KIM H,LEE Y,YIM B,et al. On-road object detection using deep neural network[C]//IEEE International Conference on Consumer Electronics-Asia. Korea:IEEE,2016:1-4.
[26]HUANG J,GUADARRAMA S,MURPHY K,et al. Speed/accuracy trade-offs for modern convolutional object detectors[C]//IEEE International Conference on Computer Vision. USA:IEEE Computer Society,2016:3296-3297.
相似文献/References:
[1]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师范大学学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[2]方谦昊,朱 红,何瀚志,等.基于卷积神经网络的脑膜瘤亚型影像自动分级[J].南京师范大学学报(自然科学版),2018,41(03):22.[doi:10.3969/j.issn.1001-4616.2018.03.004]
Fang Qianhao,Zhu Hong,He Hanzhi,et al.Automatic Classification of Meningioma Subtype ImageBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):22.[doi:10.3969/j.issn.1001-4616.2018.03.004]
[3]尤鸣宇,韩 煊.基于样本扩充的小样本车牌识别[J].南京师范大学学报(自然科学版),2019,42(03):1.[doi:10.3969/j.issn.1001-4616.2019.03.001]
You Mingyu,Han Xuan.Small Sample License Plate Recognition Based on Sample Expansion[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(01):1.[doi:10.3969/j.issn.1001-4616.2019.03.001]
[4]赵文芳,林润生,唐 伟,等.基于深度学习的PM2.5短期预测模型[J].南京师范大学学报(自然科学版),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
Zhao Wenfang,Lin Runsheng,Tang Wei,et al.Forecasting Model of Short-Term PM2.5 ConcentrationBased on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(01):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
[5]韩文军,孙小虎,吉根林,等.基于卷积神经网络的多光谱与全色遥感图像融合算法[J].南京师范大学学报(自然科学版),2021,44(03):123.[doi:10.3969/j.issn.1001-4616.2021.03.018]
Han Wenjun,Sun Xiaohu,Ji Genlin,et al.Multispectral and Panchromatic Remote Sensing Image Fusion AlgorithmBased on Convolutional Neural Networks[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(01):123.[doi:10.3969/j.issn.1001-4616.2021.03.018]
[6]严 忱,严云洋,高尚兵,等.基于多级特征融合的视频火焰检测方法[J].南京师范大学学报(自然科学版),2021,44(03):131.[doi:10.3969/j.issn.1001-4616.2021.03.019]
Yan Chen,Yan Yunyang,Gao Shangbing,et al.Video Flame Detection Based on Fusion of Multilevel Features[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(01):131.[doi:10.3969/j.issn.1001-4616.2021.03.019]
[7]蔡钟晟,陈 飞,曾勋勋.一种具有抗噪性能的圆形目标检测器[J].南京师范大学学报(自然科学版),2021,44(04):85.[doi:10.3969/j.issn.1001-4616.2021.04.011]
Cai Zhongsheng,Chen Fei,Zeng Xunxun.A Circular Object Detector with Anti-Noise Performance[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(01):85.[doi:10.3969/j.issn.1001-4616.2021.04.011]
[8]马晓慧,马尚才,闫俊伢,等.基于距离感知的目标情感分类模型[J].南京师范大学学报(自然科学版),2021,44(04):111.[doi:10.3969/j.issn.1001-4616.2021.04.014]
Ma Xiaohui,Ma Shangcai,Yan Junya,et al.Distance-Based Model for Target-Level Sentiment Analysis[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(01):111.[doi:10.3969/j.issn.1001-4616.2021.04.014]
[9]钟桂凤,庞雄文,孙道宗.基于差分进化的卷积神经网络的文本分类研究[J].南京师范大学学报(自然科学版),2022,45(01):136.[doi:10.3969/j.issn.1001-4616.2022.01.019]
Zhong Guifeng,Pang Xiongwen,Sun Daozong.Research on Text Classification Based on Convolutional Neural Network of Differential Evolution[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(01):136.[doi:10.3969/j.issn.1001-4616.2022.01.019]
[10]邬忠萍,刘新厂,郝宗波.基于并行CNN和识别策略优化的车牌识别方法研究[J].南京师范大学学报(自然科学版),2023,46(03):98.[doi:10.3969/j.issn.1001-4616.2023.03.013]
Wu Zhongping,Liu Xinchang,Hao Zongbo.Research of License Plate Recognition Method Based on Parallel CNN and Optimization Strategies[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(01):98.[doi:10.3969/j.issn.1001-4616.2023.03.013]