[1]鞠永和,王静成,朱俊武,等.一种基于均衡的医疗资源配置求解方法[J].南京师范大学学报(自然科学版),2019,42(02):30-36.[doi:10.3969/j.issn.1001-4616.2019.02.005]
 Ju Yonghe,Wang Jingcheng,Zhu Junwu,et al.A Method of Medical Resource Allocation Based on Equilibrium[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):30-36.[doi:10.3969/j.issn.1001-4616.2019.02.005]
点击复制

一种基于均衡的医疗资源配置求解方法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年02期
页码:
30-36
栏目:
·数学与计算机科学·
出版日期:
2019-06-30

文章信息/Info

Title:
A Method of Medical Resource Allocation Based on Equilibrium
文章编号:
1001-4616(2019)02-0030-07
作者:
鞠永和12王静成2朱俊武3宋 衡3陶立坚1
(1.中南大学公共卫生学院,湖南 长沙 410083)(2.扬州大学临床医学院,江苏 扬州 225001)(3.扬州大学信息工程学院 江苏 扬州 225000)
Author(s):
Ju Yonghe12Wang Jingcheng2Zhu Junwu3Song Heng3Tao Lijian1
(1.School of Public Health,Central South University,Changsha 410083,China)(2.Medical College,Yangzhou University,Yangzhou 225001,China)(3.School of Information Engineering,Yangzhou University,Yangzhou 225000,China)
关键词:
医疗资源结盟均衡社会最优资源配置
Keywords:
medical resourceallianceequilibriumsocial optimizationresource allocation
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2019.02.005
文献标志码:
A
摘要:
在医疗系统中,医疗资源的配置通常以资源配置均衡和最大化医疗资源总体收益为目标. 为了通用化模型,本文将医疗资源模型化为Agent,提出一种基于社会最优配置的Agent联盟收益均衡配置方法. 首先,针对所有可能的联盟求得满足社会最优配置的Agent分组; 在均衡配置存在的条件下,使用不断迭代的方式使得个体Agent产生的收益逼近均衡配置状态,得到一个同时具备Agent配置均衡和总体收益最大化两个属性的配置解. 在配置护士到病房的应用表明,本方法有效地得到了一个满足利益均衡的联盟策略与收益配置方案.
Abstract:
In the medical system,the medical resource allocation aims at the equilibrium of resource allocation and the maximization of the total revenue. In order to generalize our model,this paper models the medical resource as agent,and presents a methods for finding the equilibrium of resource allocation with agents’alliance based social optimal allocation. Firstly,the agents’groups which meet social optimality are found in the all possible allied pairs; Under the condition of equilibrium exists,the revenue of individual agent will be close to equilibrium after multiple iterations,and an allocation solution which satisfies allocation equilibrium and maximum total revenue is generated. Finally,the example about allocating nurses to sickroom is given to show that this method effectively get an alliance strategy and a revenue allocation scheme satisfied equilibrium.

参考文献/References:

[1] 吴琪,苗瑞,宋雨沁,等. 面向分级诊疗的医疗资源配置决策研究[J]. 工业工程与管理,2018,23(3):150-156.
[2]黄舒婷,庞震苗,邹晓琦,等. 基于数据包络分析的广东省中医医院医疗资源配置效率分析[J]. 中国卫生统计,2017(1):118-120.
[3]HERRERA J G,BOTERO J F. Resource allocation in NFV:a comprehensive survey[J]. IEEE transactions on network & service management,2017,13(3):518-532.
[4]SFAR A R,CHALLAL Y,MOYAL P,et al. A game theoretic approach for privacy preserving model in IoT-based transportation[J]. IEEE transactions on intelligent transportation systems,2019(99):1-10.
[5]CINTUGLU M H,MARTIN H,MOHAMMED O A. Real-time implementation of multiagent-based game theory reverse auction model for microgrid market operation[J]. IEEE transactions on smart grid,2015,6(2):1064-1072.
[6]张映芹,王青. 我国城乡医疗卫生资源配置均衡性研究[J]. 医学与社会,2016(1):7-9.
[7]曹宇,温小霓. 基于系统动力学模型的医疗资源配置与优化[J]. 现代医院管理,2012,1:19-23.
[8]WEN T,ZHANG Z,QIU M,et al. A multi-objective optimization method for emergency medical resources allocation[J]. Journal of medical imaging and health informatics,2017,7(2):393-399.
[9]EICHBAUM,QUENTIN. Better allocation and sharing of resources in global medical education[J]. Academic medicine,2017,92(10):1363.
[10]ZHU M,CHEN R,ZHONG S,et al. Medical resource preparation and allocation for humanitarian assistance based on module organization[J]. Minerva medica,2017,108(1):20.
[11]ZHANG X,WU K. The construction of evaluation model of Chinese traditional culture multimedia teaching resources allocation in big data environment[C]//International Conference on Intelligent Transportation. IEEE Computer Society,2018.
[12]KUNST R,AVILA L,PIGNATON E,et al. Improving network resources allocation in smart cities video surveillance[J]. Computer networks,2018,134:228-244.
[13]FERDOWSI A,SANJAB A,SAAD W,et al. Game theory for secure critical interdependent gas-power-water infrastructure[J]. IEEE resitience week(RWS),2017:184-190.
[14]SERRANO R. Cooperative game core and shapely value[M]. Encyclopedia of Complexity and System Science. Berlin:Springer-Verlag,2007.
[15]FELE F,MAESTRE J M,CAMACHO E F. Coalitional control:cooperative game theory and control[J]. IEEE control systems,2017,37(1):53-69.
[16]CHENG J Q,WELLMAN M P. The WALRAS algorithm:a convergent distributed implementation of general equilibrium outcomes[J]. Computational economics,1998,12(1):1-24.
[17]HERNáNDEZ,ROBERTO,CáRDENAS,et al. Game theory applied to transportation systems in smart cities:analysis of evolutionary stable strategies in a generic car pooling system[J]. International journal on interactive design and manufacturing,2017.
[18]XIAO-HUI Y U,ZHANG Q. Profit allocation in production cooperative game based on interval shapley value[J]. Transaction of Beijing Institute of Technology,2008,28(7):655-658.
[19]ZHANG F,ZHENG Z,JIAO L. Dynamically optimized sensor deployment based on game theory[J]. Journal of systems science and complexity,2018,31(1):276-286.
[20]GENG C,QU S Y,XIAO Y Y. Diffusion mechanism simulation of cloud manufacturing complex network based on cooperative game theory[J]. Journal of systems engineering and electronics,2018,29(2):103-117.
[21]KUIPERS J,MOSQUERA M A,ZARZUELO, JOSé M. Zarzuelo. Sharing costs in highways:a game theoretic approach[J]. European journal of operational research,2013,228(1):158-168.

相似文献/References:

[1]万辉,李永凤.一个传染病模型的Bogdanov-Takens分支分析(英文)[J].南京师范大学学报(自然科学版),2012,35(04):7.
 Wan Hui,Li Yongfeng.Bogdanov-Takens Bifurcation Analysis of an Epidemic Model[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(02):7.
[2]白 婵,万 辉.一个传染病模型中的后向分支问题(英文)[J].南京师范大学学报(自然科学版),2017,40(03):5.[doi:10.3969/j.issn.1001-4616.2017.03.002]
 Bai Chan,Wan Hui.Backward Bifurcation in an Epidemic Model[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(02):5.[doi:10.3969/j.issn.1001-4616.2017.03.002]

备注/Memo

备注/Memo:
收稿日期:2018-12-19.
基金项目:国家自然科学基金(61872313)、江苏省科技发展计划(BR2012025)、江苏省卫生计生委信息化科研课题项目(X201608)、扬州市科技发展计划项目(YZ2014199).
通讯联系人:朱俊武,教授,研究方向:云计算,博弈论,机制设计方面. E-mail: jwzhu@yzu.edu.cn
更新日期/Last Update: 2019-06-30