[1]卡米拉,汤国安,杨 昕,等.陕北黄土高原地貌空间分形特征(英文)[J].南京师范大学学报(自然科学版),2020,43(02):56-62.[doi:10.3969/j.issn.1001-4616.2020.02.010]
 Kamila J Kabo-bah,Tang Guoan,Yang Xin,et al.Spatial Fractal Properties of Loess Plateauin the Northern Shaanxi Province of China[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(02):56-62.[doi:10.3969/j.issn.1001-4616.2020.02.010]
点击复制

陕北黄土高原地貌空间分形特征(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第43卷
期数:
2020年02期
页码:
56-62
栏目:
·地理学·
出版日期:
2020-05-30

文章信息/Info

Title:
Spatial Fractal Properties of Loess Plateauin the Northern Shaanxi Province of China
文章编号:
1001-4616(2020)02-0056-07
作者:
卡米拉123汤国安14杨 昕15那嘉明45熊礼阳15
(1.南京师范大学地理科学学院,江苏 南京 210023)(2.能源与自然资源大学地球科学学院,加纳 苏尼亚尼 214)(3.能源与自然资源大学地球观测研究和创新中心,加纳 苏尼亚尼 214)(4.南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023)(5.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
Author(s):
Kamila J Kabo-bah123Tang Guoan14Yang Xin15Na Jiaming45Xiong Liyang15
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.School of Geosciences,University of Energy and Natural Resources,Sunyani 214,Ghana)(3.Earth Observation Research and Innovation Centre(EORIC),University of Energy and Natural Resources,Sunyani 214,Ghana)(4.Key Laboratory of Virtual Geographic Environment of Ministry of Education,Nanjing Normal University,Nanjing 210023,China)(5.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
关键词:
数字高程模型格网大小分维数Strahler 级数地貌类型
Keywords:
digital elevation modelgrid sizefractal dimensionStrahler numberlandform types
分类号:
P208
DOI:
10.3969/j.issn.1001-4616.2020.02.010
文献标志码:
A
摘要:
陕北黄土高原因其地貌类型既丰富又典型,是地貌研究的重要区域,已有不少关于本地区的地貌研究成果. 然而对分维值的空间分异及其与地貌特征之间的关系的认识还十分有限. 因此,本文评估了用分形方法探索地形和河网的分维特征的应用适宜性. 结果显示,计算分维值的窗口大小影响结果的空间分布特性. 当格网大小为32时是最适合黄土高原地区的分维值估算,其结果与其他研究展示的地貌分类一致. 网格大小分别为16和64时,会产生高估或低估分维值的结果. 对河网的分形研究表明,分维值与Strahler级数相关,河网级数越多,分维值越大. 河网结构的分形特征还有待进一步研究. 本文研究成果可为地貌特征和其他地区的分形研究提供参考.
Abstract:
The Loess Plateau of the Northern Shaanxi Province of China is an important area of research for geomorphological studies. Several studies have been conducted in the past in this particular subject of geomorphology. However,spatial variability of fractal dimension(FD)vis-à-vis its relationship with landform characteristics have been limited. Thus,the paper assessed the application of fractal methodology to investigate the fractal properties the terrain and stream networks. The results show that Grid Size(GS)for the FD estimation affects the distribution of the values obtained. It was recommended that for the Loess Plateau understudy,a GS of 32 was realistic and mimics well with the landform classification types provided by other studies. The GS of 16 and 64 underestimates and overestimates the FD respectively. The FD values for the stream networks indicate that Strahler Numbers(SN)and FD are related. For instance,the higher SN,the higher FD. However,a more in-depth analysis of the SN and FD needs to be conducted in future studies. The findings from this study could provide a baseline support for future research on geomorphology in the Loess Plateau and support for other regions interested in similar work.

参考文献/References:

[1] Lü G,XIONG L,CHEN M. Chinese progress in geomorphometry[J]. Journal of geographical sciences,2017,27(11):1389-1412.
[2]XIONG L,TANG G,YAN S,et al. Landform-oriented flow-routing algorithm for the dual-structure loess terrain based on digital elevation models[J]. Hydrological processes,2014,28(4):1756-1766.
[3]EVANS I S. Geomorphometry and landform mapping:What is a landform?[J]. Geomorphology,2012,137(1):94-106.
[4]MANDELBROT B B. Fractals:form,chance and dimension[M]. San Francisco(CA,USA):W. H. Freeman and Company,1979:16-365.
[5]ANGELES G R,PERILLO G M E,PICCOLO M C,et al. Fractal analysis of tidal channels in the Bahia Blanca Estuary(Argentina)[J]. Geomorphology,2004,57(3):263-274.
[6]GAO J,XIA Z. Fractals in physical geography[J]. Progress in physical geography,1996,20(2):178-191.
[7]HUANG J,TURCOTTE D L. Fractal mapping of digitized images:application to the topography of Arizona and comparisons with synthetic images[J]. Journal of geophysical research,1989,94(B6):7491-7495.
[8]KLINKENBERG B,GOODCHILD M F. The fractal properties of topography:a comparison of methods[J]. Earth surface progress and landforms,1992,17(3):217-234.
[9]LI M,YANG X,NA J,et al. Regional topographic classification in the North Shaanxi Loess Plateau based on catchment boundary profiles[J]. Progress in physical geography,2017,41(3):302-324.
[10]MANDELBROT B B. Fractal geometry of nature[M]. San Francisco(CA,USA):W. H. Freeman and Company,1983:170-180.
[11]VAZIRI G,ALMASGANJ F,JENABI M S. On the fractal self-similarity of laryngeal pathologies detection:the estimation of Hurst parameter[C]//2008 International Conference on Information Technology and Applications in Biomedicine,Shenzhen,China,2008. Shenzhen:IEEE,2008:383-386.
[12]XIAO L,XUE S,LIU G,et al. Fractal features of soil profiles under different land use patterns on the Loess Plateau,China[J]. Journal of arid land,2014,6(5):550-560.
[13]XU T,MOORE I D,GALLANT J C. Fractals,fractal dimensions and landscapes—a review[J]. Geomorphology,1993,8(4):245-262.
[14]PAZHOOHAN M,NOURBAKHSH A. Geomorphic analysis of the Southern Zagros Mountain Belt:insight into a remotely sensed fractal approach[J]. Journal of the Indian society of remote sensing,2019,47:1547-1555.
[15]MARK D M,ARONSON P B. Scale-dependent fractal dimensions of topographic surfaces:an empirical investigation,with applications in geomorphology and computer mapping[J]. Mathematical geology,1984,16(7):671-683.
[16]ANDRLE R. Estimating fractal dimension with the divider method in geomorphology[J]. Geomorphology,1992,5(1/2):131-141.
[17]DONADIO C,MAGDALENO F,KONDOLF G M,et al. Fractal dimension of the hydrographic pattern of three large rivers in the Mediterranean morphoclimatic system:geomorphologic interpretation of Russian(USA),Ebro(Spain)and Volturno(Italy)fluvial geometry[J]. Pure and applied geophysics,2015,172:1975-1984.
[18]CLARKE R T. A review of some mathematical models used in hydrology,with observations on their calibration and use[J]. Journal of hydrology,1973,19(1):1-20.
[19]KLINKENBERG B. A review of methods used to determine the fractal dimension of linear features[J]. Mathematical geology,1994,26(1):23-46.
[20]PANIGRAHY C,SEAL A,MAHATO N K,et al. Differential box counting methods for estimating fractal dimension of gray-scale images:a survey[J]. Chaos,solitons & fractals,2019,126:178-202.
[21]RODRIGUEZ I I,RINALDO A. Fractal river networks:chance and self-organization[M]. New York:Cambridge University Press,1997:547.
[22]USGS. Earth explorer[J/OL]. [2018-11-20]. https://earthexplorer.usgs.gov/.
[23]CUI Y,GHONIEM N. Influence of size on the fractal dimension of dislocation microstructure[J]. Metals,2019,9(4):478-487.
[24]CZIRK A,SOMFAI E,VICSEK T. Fractal scaling and power-law landslide distribution in a micromodel of geomorphological evolution[J]. Geologische rundschau,1997,86(3):525-530.
[25]FENG Y,LIU Y. Fractal dimension as an indicator for quantifying the effects of changing spatial scales on landscape metrics[J]. Ecological indicators,2015,53:18-27.
[26]ZHOU Y,TANG G,YANG X,et al. Positive and negative terrains on northern Shaanxi Loess Plateau[J]. Journal of geographical sciences,2010,20(1):64-76.
[27]KHANBABAEI Z,KARAM A,ROSTAMIZAD G. Studying relationships between the fractal dimension of the drainage basins and some of their geomorphological characteristics[J]. International journal of geosciences,2013,4(3):636-642.
[28]ROSSO R,BACCHI B,LA B P. Fractal relativa of mainstream length to catchment area in river networks[J]. Water resources research,1991,27(3):381-387.

相似文献/References:

[1]石志宽.高程注记对数字高程模型精度的影响模式研究[J].南京师范大学学报(自然科学版),2010,33(03):109.
 Shi Zhikuan,Tang Guoan.Research on the Influence Pattern of Elevation Annotation on DEM Accuracy[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(02):109.
[2]任志峰,刘学军,卢华兴,等.基于Strahler积分的DEM精度评价模型[J].南京师范大学学报(自然科学版),2008,31(02):119.
 Ren Zhifeng,Liu Xuejun,Lu Huaxing,et al.DEM Accuracy Model Based on Area-altitude Analysis of Strahler[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(02):119.
[3]常直杨,孙伟红,王 建,等.数字高程模型在构造地貌形态分析中的应用现状及展望[J].南京师范大学学报(自然科学版),2015,38(04):129.
 Chang Zhiyang,Sun Weihong,Wang Jian,et al.Application of DEM in the Morphological Analysis ofTectonic Geomorphology:Status and Prospect[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):129.

备注/Memo

备注/Memo:
Received data:2019-03-29.
Foundation item:Support by the National Natural Science Foundation of China(41930102,41771415),the Priority Academic Program Development of Jiangsu Higher Education Institutions(164320H116).
Corresponding author:Yang X
更新日期/Last Update: 2020-05-15