参考文献/References:
[1] Kozodoi N,Lessmann S,Papakonstantinou K,et al. A multi-objective approach for profit-driven feature selection in credit scoring[J]. Decision support systems,2019,120:106-117.
[2]JIANG B,LI C,RIJKE M D,et al. Probabilistic feature selection and classification vector machine[J]. ACM transactions on knowledge discovery from data,2019,13(2):1-27.
[3]KULKARNI A,METTA R. A new code obfuscation scheme for software protection[C]//2014 IEEE 8th International Symposium on Service Oriented System Engineering. Oxford:IEEE,2014:409-414.
[4]COLLBERG C,THOMBORSON C,LOW D. A taxonomy of obfuscating transformations[D]. New Zealand:The University of Auckland,1997.
[5]LI J,CHENG K,WANG S,et al. Feature selection:a data perspective[J]. ACM computing surveys,2017,50(6):1-45.
[6]李郅琴,杜建强,聂斌. 特征选择方法综述[J]. 计算机工程与应用,2019,55(24):10-19.
[7]ZHANG Y,WANG Q,GONG D,et al. Nonnegative Laplacian embedding guided subspace learning for unsupervised feature selection[J]. Pattern recognition,2019,93:337-352.
[8]ZHAO S,ZHANG Y,XU H,et al. Ensemble classification based on feature selection for environmental sound recognition[J]. Mathematical problems in engineering,2019,2019.
[9]SAQLAIN S M,SHER M,SHAH F A,et al. Fisher score and Matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines[J]. Knowledge and information systems,2019,58(1):139-167.
[10]张康,黑保琴,周壮,等. 变异系数降维的CNN高光谱遥感图像分类[J]. 遥感学报,2018,22(1):87-96.
[11]MAFARJA M,ALJARAH I,HEIDARI A A,et al. Binary dragonfly optimization for feature selection using time-varying transfer functions[J]. Knowledge-based systems,2018,161:185-204.
[12]王金杰,李炜. 混合互信息和粒子群算法的多目标特征选择方法[J]. 计算机科学与探索,2020,14(1):83-95.
[13]RAO H,SHI X,RODRIGUE A K,et al. Feature selection based on artificial bee colony and gradient boosting decision tree[J]. Applied soft computing,2019,74:634-642.
[14]WANG H,MENG Y,YIN P,et al. A model-driven method for quality reviews detection:an ensemble model of feature selection[C]//Wuhan International Conference on E-Business. Wuhan,China,2016:2.
[15]巫红霞,谢强. 基于加权社区检测与增强人工蚁群算法的高维数据特征选择[J]. 计算机应用与软件,2019,36(9):285-292,301.
[16]程玉胜,宋帆,王一宾,等. 基于专家特征的条件互信息多标记特征选择算法[J]. 计算机应用,2020,40(2):503-509.
[17]DUA D,GRAFF C. UCI Machine Learning Repository[http://archive.ics.uci.edu/ml]. Irvine,CA:University of California,School of Information and Computer Science. 2019.
相似文献/References:
[1]吉珊珊.基于神经网络树和人工蜂群优化的数据聚类[J].南京师大学报(自然科学版),2021,44(01):119.[doi:10.3969/j.issn.1001-4616.2021.01.017]
Ji Shanshan.Neuron Network Tree and Artificial Bee Colony OptimizationBased Data Clustering Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(01):119.[doi:10.3969/j.issn.1001-4616.2021.01.017]
[2]孙 林,施恩惠,司珊珊,等.基于AP聚类和互信息的弱标记特征选择方法[J].南京师大学报(自然科学版),2022,45(03):108.[doi:10.3969/j.issn.1001-4616.2022.03.014]
Sun Lin,Shi Enhui,Si Shanshan,et al.Weak Label Feature Selection Method Based on AP Clustering and Mutual Information[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(01):108.[doi:10.3969/j.issn.1001-4616.2022.03.014]
[3]陆嘉华,梅 飞,杨 赛,等.基于特征选择和组合预测模型的负荷短期预测方法[J].南京师大学报(自然科学版),2023,46(04):114.[doi:10.3969/j.issn.1001-4616.2023.04.015]
Lu Jiahua,Mei Fei,Yang Sai,et al.Short-term Load Forecasting Method Based on Feature Selection and Combination Forecasting Model[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(01):114.[doi:10.3969/j.issn.1001-4616.2023.04.015]
[4]穆晓霞,郑李婧.基于F-score和二进制灰狼优化的肿瘤基因选择方法[J].南京师大学报(自然科学版),2024,(01):111.[doi:10.3969/j.issn.1001-4616.2024.01.013]
Mu Xiaoxia,Zheng Lijing.Tumor Gene Selection Based on F-score and Binary Grey Wolf Optimization[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(01):111.[doi:10.3969/j.issn.1001-4616.2024.01.013]