参考文献/References:
[1]LIU Y,LIAO W,CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C]//Proceedings of the 9th Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining. Berlin:Springer,2005:689-695.
[2]DAM T L,KENLI L I,FOURNIER-VIGER P,et al. CLS-Miner:efficient and effective closed high-utility itemset mining[J]. Frontiers of computer science,2019,13(2):357-381.
[3]SETHI K K,DHARAVATH R. A fast high average-utility itemset mining with efficient tighter upper bounds and novel list structure[J]. Journal of supercomputing,2020,76(12):10288-10318.
[4]杨皓,段磊,胡斌,等. 带间隔约束Top-k对比序列模式挖掘[J]. 软件学报,2015,26(11):2994-3009.
[5]王晓璇,王丽珍,陈红梅,等. 基于特征效用参与率的空间高效用co-location模式挖掘方法[J]. 计算机学报,2019,42(8):1721-1738.
[6]吉根林,王敏. 时空轨迹聚集模式挖掘研究进展[J]. 南京师大学报(自然科学版),2015,38(4):1-7.
[7]NOUIOUA M,FOURNIER-VIGER P,WU C W,et al. FHUQI-Miner:fast high utility quantitative itemset mining[J]. Applied intelligence,2021,51(10):6785-6809.
[8]WANG C M,CHEN S H,HUANG Y F. A fuzzy approach for mining high utility quantitative itemsets[C]//In 2009 IEEE International Conference on Fuzzy Systems. IEEE,2009:1909-1913.
[9]LAN G C,HONG T P,LIN Y H,et al. Fuzzy utility mining with upper-bound measure[J]. Applied soft computing,2015,30:767-777.
[10]LAN G C,HONG T P,LIN Y H,et al. Fast discovery of high fuzzy utility itemsets[C]//2014 IEEE International Conference on Systems,Man,and Cybernetics(SMC). IEEE,2014:2764-2767.
[11]HONG T P,LIN C Y,HUANG W M. One-phase temporal fuzzy utility mining[C]//In 2020 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE). IEEE,2020:1-5.
[12]WU J M T,LIN J C W,FOURNIER-VIGER P,et al. A ga-based framework for mining high fuzzy utility itemsets[C]//2019 IEEE International Conference on Big Data(Big Data). IEEE,2019:2708-2715.
[13]YANG F,MU N,LIAO X,et al. EA-HUFIM:Optimization for fuzzy-based high-utility itemsets mining[J]. International journal of fuzzy systems,2021,23:1652-1668.
[14]宋威,刘明渊,李晋宏. 基于事务型滑动窗口的数据流中高效用项集挖掘算法[J]. 南京大学学报(自然科学),2014,50(4):494-504.
[15]TSAI P S M. Mining high utility itemsets in data streams based on the weighted sliding window model[J]. International journal of data mining and knowledge management process,2014,4(2):13-28.
[16]JAYSAWAL B P,HUANG J W. SOHUPDS:a single-pass one-phase algorithm for mining high utility patterns over a data stream[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York:ACM,2020:490-497.
[17]DAWAR S,SHARMA V,GOYAL V. Mining top-k high-utility itemsets from a data stream under sliding window model[J]. Applied intelligence,2017,47(4):1240-1255.
[18]程浩东,韩萌,张妮,等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展,2021,58(11):2500-2514.
[19]FOURNIER-VIGER P,WU C W,ZIDA S,et al. FHM:faster high-utility itemset mining using estimated utility co-occurrence pruning[C]//Processdings of 21st International Symposium on Methodologies for Intelligent Systems. Roskilde,Denmark:Lecture,2014:83-92.
[20]FOURNIER-VIGER P,GOMARIZ A,GUENICHE T,et al. SPMF:a Java open-source pattern mining library[J]. Journal of machine learning research,2014,15(1):3389-3393.
[21]HONG T P,LIN C Y,HUANG W M,et al. Using tree structure to mine high temporal fuzzy utility itemsets[J]. IEEE access,2020,8:153692-153706.