参考文献/References:
[1]WILD C P,WEIDERPASS E,STEWART B W. World Cancer Report:cancer research for Cancer Prevention[M]. Lyon:International Agency for Research on Cancer,2020.
[2]EIGHAZALY H,ANDERSON,ABDFLAZIZ H,et al. The first BGICC consensus and recommendations for breast awareness,early detection and risk reduction in low- and middle-income countries and the MENA region[J]. International journal of cancer,2021,149(3):505-513.
[3]王丽君,罗冉,陈艳虹,等. 影像学在乳腺癌新辅助治疗疗效评估中的优势与限度[J]. 中华放射学杂志,2022,56(1):113-116.
[4]谢亚咩,王欢. 影像新技术在乳腺疾病筛查中的应用[J]. 临床医学进展,2022,12(1):6.
[5]GARCIA T A,FERNANDEZ G S,ORTEGA R,et al. Can we avoid axillary lymph node dissection in N2 breast cancer patients with chemo-sensitive tumours such as HER2 and TNBC?[J]. Breast cancer research and treatment,2021,185(2):1-10.
[6]付慧,穆为民,吕艳丽,等. 超声诊断乳腺癌腋窝淋巴结转移状态的临床应用价值[J]. 山西医药杂志,2019,48(3):263-266.
[7]LIU C,CHEN S,YANG Y,et al. The value of the computer-aided diagnosis system for thyroid lesions based on computed tomography images[J]. Quantitative imaging in medicine and surgery,2019,9(4):642.
[8]VALDORA F,HOUSSAMI N,ROSSI F,et al. Rapid review:radiomics and breast cancer[J]. Breast cancer research & treatment,2018,169(2):217-229.
[9]DRUKKER K,GIGER M,MEINEL L A,et al. Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients[J]. International journal of computer assisted radiology & surgery,2013,8(6):895-903.
[10]金华,罗伟权,纪宗萍,等. 乳腺癌超声影像组学图像特征Logistic回归方程预测腋窝淋巴结转移风险[J]. 中国超声医学杂志,2021,37(2):139-142.
[11]马明明,崔应谱,刘想,等. 基于乳腺X线摄影的影像组学对乳腺肿块和钙化良恶性分类的研究[J]. 放射学实践,2022,37(3):325-330.
[12]SUN Q,LIN X,ZHAO Y,et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images:don't forget the peritumoral region[J]. Frontiers in oncology,2020,10:53.
[13]HUANG G,LIU Z,MAATEN V D,et al. Densely connected convolutional networks[C]//Proceedings of the 30th IEEE conference on computer vision and pattern recognition. Honolulu,Hawaii:IEEE,2017.
[14]RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C]//International conference on medical image computing and computer-assisted intervention. Munich Germany:Springer,2015.
[15]OKTAY O,SCHLEMPER J,FOLGOC L L,et al. Attention U-net:learning where to look for the pancreas[C]//International conference on medical imaging with deep learning. New York:PMLR,2018.
[16]GU Z W,CHENG J,FU H Z,et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE transactions on medical imaging,2019,38(10):2281-2292.
[17]ZHOU L Q,WU X L,HUANG S Y,et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology,2020,294(1):19-28.
[18]ZHENG X,YAO Z,HUANG Y,et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nature communications,2020,11(1):1-9.
[19]ZHANG Y,YING M T C,YANG L,et al. Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images[C]//IEEE international conference on bioinformatics and biomedicine(BIBM). Shenzhen,China:IEEE,2016.
[20]SHELHAMER E,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence,2016,39(4):640-651.
[21]LIN Y,ZHANG Y Z,CHEN J X,et al. Suggestive annotation:A deep active learning framework for biomedical image segmentation[C]//International conference on medical image computing and computer-assisted intervention. Quebec City,Canada:Springer,2017.
[22]BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(12):2481-2495.
[23]ZHAO H S,SHI J P,QI X J,et al. Pyramid scene parsing network[C]//2017 IEEE conference on computer vision and pattern recognition(CVPR). Honolulu:IEEE,2017.
[24]CHEN L C,ZHU Y,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision(ECCV). Munich,Germany:Springer,2018.
相似文献/References:
[1]康家银,张文娟.用于图像分割的非局部空间约束的核FCM算法[J].南京师大学报(自然科学版),2019,42(03):122.[doi:10.3969/j.issn.1001-4616.2019.03.016]
Kang Jiayin,Zhang Wenjuan.Kernelized FCM Algorithm with Non-Local SpatialConstraint for Image Segmentation[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):122.[doi:10.3969/j.issn.1001-4616.2019.03.016]
[2]韩 悦,张永寿,郭依廷,等.乳腺癌腋窝淋巴结超声图像分割算法研究[J].南京师大学报(自然科学版),2021,44(04):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
Han Yue,Zhang Yongshou,Guo Yiting,et al.Research on Ultrasound Image Segmentation Algorithm forAxillary Lymph Node with Breast Cancer[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
[3]李锦峰,裴 伟,朱永英,等.基于主题色板的图像上色方法研究[J].南京师大学报(自然科学版),2022,45(03):116.[doi:10.3969/j.issn.1001-4616.2022.03.015]
Li Jinfeng,Pei Wei,Zhu Yongying,et al.Research on Image Coloring Method Based on Theme Palette[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(02):116.[doi:10.3969/j.issn.1001-4616.2022.03.015]