[1]孙 鉴,吴隹伟,刘陈伟,等.一种基于改进人工鱼群的云计算任务调度算法[J].南京师大学报(自然科学版),2024,(01):91-102.[doi:10.3969/j.issn.1001-4616.2024.01.011]
 Sun Jian,Wu Zhuiwei,Liu Chenwei,et al.A Cloud Computing Task Scheduling Algorithm Based on Improved Artificial Fish Warm[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(01):91-102.[doi:10.3969/j.issn.1001-4616.2024.01.011]
点击复制

一种基于改进人工鱼群的云计算任务调度算法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年01期
页码:
91-102
栏目:
计算机科学与技术
出版日期:
2024-03-15

文章信息/Info

Title:
A Cloud Computing Task Scheduling Algorithm Based on Improved Artificial Fish Warm
文章编号:
1001-4616(2024)01-0091-12
作者:
孙 鉴12吴隹伟1刘陈伟1武 涛1
(1.北方民族大学计算机科学与工程学院,宁夏 银川 750021)
(2.北方民族大学图像图形智能处理国家民委重点实验室,宁夏 银川 750021)
Author(s):
Sun Jian12Wu Zhuiwei1Liu Chenwei1Wu Tao1
(1.School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China)
(2.The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China)
关键词:
云计算任务调度人工鱼群CloudSim最大完工时间成本
Keywords:
cloud computingtask schedulingAFSACloudSimmakespancost
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2024.01.011
文献标志码:
A
摘要:
为提高云计算任务调度的效率,减少系统执行任务的最大完工时间以及成本,本文提出一种改进的人工鱼群任务调度算法(improved artificial fish swarm algorithm,IAFSA). 首先,将反向学习策略应用于种群初始化和鱼群的行为选择中,以提高改进人工鱼群算法在迭代中的收敛速度和种群多样性. 其次,将自适应全局-局部记忆机制引入到标准AFSA算法的觅食行为中,以进一步提高勘探能力. 最后,增加了基于平均适应度的行为选择机制,以提供更合理的行为选择,减少算法的复杂性. 通过使用CloudSim 平台进行实验验证,分别测试在不同任务规模下IAFSA的算法效能. 实验结果表明,改进人工鱼群算法在降低系统任务最大完工时间和成本上均表现出了显著的优势.
Abstract:
In order to improve the efficiency of cloud computing task scheduling and reduce the makespan and cost of tasks,this paper proposes an improved artificial fish swarm task scheduling algorithm(IAFSA). Firstly,the opposition-based learning strategy was applied to the population initialization and the behavior selection of the fish swarm to improve the convergence speed and population diversity of the improved artificial fish swarm algorithm in iterations. Secondly,the adaptive global-local memory mechanism was introduced into the foraging behavior of the standard AFSA algorithm to further improve the exploration ability. Finally,an action selection mechanism based on average fitness was added to provide more reasonable action selection and reduce the complexity of the algorithm. By using CloudSim platform for experimental verification,the algorithm efficiency of IAFSA under different task scales was tested respectively. The experimental results show that the improved artificial fish swarm algorithm has significant advantages in reducing the maximum completion time and cost of the system task.

参考文献/References:

[1]ASHRAF H,ALJAMMAL,NEDAL M,et al. A new architecture of cloud computing to enhance the load balancing[J]. International journal of business information systems,2017,25(3):393-405.
[2]徐保民,倪旭光.云计算发展态势与关键技术进展[J]. 中国科学院院刊,2015,30(2):170-180.
[3]郑爽,吕遐东,陈杰.面向多目标优化的云计算调度研究综述[J]. 舰船电子工程,2022,42(9):13-19.
[4]ZHOU Z,LI F,ABAWAJY J H,et al. Improved PSO algorithm integrated with opposition-based learning and tentative perception in networked data centres[J]. IEEE access,2020,8:55872-55880.
[5]孙敏,叶侨楠,陈中雄.云环境下方差定向变异遗传算法的任务调度[J]. 计算机应用,2019,39(11):3328-3332.
[6]JIA Z,WANG Y,WU C,et al. Multi-objective energy-aware batch scheduling using ant colony optimization algorithm[J]. Computers & industrial engineering,2019,131:41-56.
[7]PREM J T,PRADEEP K. A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization[J]. Wireless personal communications,2019,109:315-331.
[8]FU X L,SUN Y,WANG H F,et al. Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm[J]. Cluster computing,2023,26(5):2479-2488.
[9]NATESAN G,CHOKKALINGAM A. Multi-objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment[J]. Wireless personal communications,2020,110:1887-1913.
[10]李晓磊. 一种新型的智能优化方法—人工鱼群算法[D]. 杭州:浙江大学,2003.
[11]李君,梁昔明. 人工鱼群算法收敛速度改进优化仿真[J]. 计算机仿真,2018,35(1):232-238.
[12]王联国,施秋红. 人工鱼群算法的参数分析[J]. 计算机工程,2010,36(24):169-171.
[13]杨文杰,巨涛,杨阳,等. 面向边缘计算的人工鱼群搜索任务调度[J]. 电子测量与仪器学报,2022,36(11):149-159.
[14]陆俊明,张向锋. 一种改进的粒子群人工鱼群算法[J]. 上海电机学院学报,2019,22(1):50-55.
[15]徐建波,戴月明,严大虎. 双自适应人工鱼群优化算法[J]. 微电子学与计算机,2018,35(4):53-57.
[16]YANG X S. Flower pollination algorithm for global optimization[C]//Unconventional Computation and Natural Computation:11th International Conference. Berlin Heidelberg:Springer,2012.
[17]TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling,Control and Automation and International Conference on Intelligent Agents,Web Technologies and Internet Commerce(CIMCA-IAWTIC'06). Vienna,Austria:IEEE,2005.
[18]MALISIA A R,TIZHOOSH H R. Applying opposition-based ideas to the ant colony system[C]//2007 IEEE Swarm Intelligence Symposium. Honolulu,USA:IEEE,2007.
[19]WANG H,LI H,LIU Y,et al. Opposition-based particle swarm algorithm with Cauchy mutation[C]//2007 IEEE Congress on Evolutionary Computation. Singapore:IEEE,2007.
[20]RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A. Quasi-oppositional differential evolution[C]//2007 IEEE Congress on Evolutionary Computation. Singapore:IEEE,2007.
[21]黄光球,刘嘉飞,姚玉霞. 人工鱼群算法的全局收敛性证明[J]. 计算机工程,2012,38(2):204-206.
[22]CALHEIROS R N,RANJAN R,BELOGLAZOV A,et al. CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software:Practice and experience,2011,41(1):23-50.
[23]刘志锋,舒志浩,胥越峰,等. 基于PSO自适应双策略的人工鱼群算法[J]. 计算机与现代化,2022,321(5):46-53.
[24]WANG X H,LI J J. Hybrid particle swarm optimization with simulated annealing[C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Shanghai:IEEE,2004.

相似文献/References:

[1]施珺,李慧,周立东,等.基于云计算的安全数据存储研究[J].南京师大学报(自然科学版),2012,35(03):138.
 Shi Jun,Li Hui,Zhou Lidong.Research of Security Data Storage Based on Cloud Computing[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):138.
[2]朱艳琴,王琴琴,王婷婷,等.基于云计算的可查询加密研究综述[J].南京师大学报(自然科学版),2014,37(01):8.
 Zhu Yanqin,Wang Qinqin,Wang Tingting,et al.A Survey of Searchable Encryption Based on Cloud Computing[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):8.
[3]许 波,彭志平,陈 珂,等.云计算中虚拟机管理系统的研究与开发[J].南京师大学报(自然科学版),2014,37(01):93.
 Xu Bo,Peng Zhiping,Chen Ke,et al.Research and Development of Virtual Machine Management System in Cloud Computing[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):93.
[4]张 岚,何雪莹,曹芳东.互联网旅游企业云服务创新对品牌资产价值影响研究[J].南京师大学报(自然科学版),2020,43(02):78.[doi:10.3969/j.issn.1001-4616.2020.02.013]
 Zhang Lan,He Xueying,Cao Fangdong.Research on the Influence of Cloud Service Innovation ofInternet Tourism Enterprises on Brand Equity Value[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(01):78.[doi:10.3969/j.issn.1001-4616.2020.02.013]
[5]苏淑霞.粒子群算法在云计算任务调度中的应用[J].南京师大学报(自然科学版),2014,37(04):145.
 Su Shuxia.Application of Particle Swarm Optimization Algorithmon Cloud Computing Task Scheduling[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):145.

备注/Memo

备注/Memo:
收稿日期:2023-05-21.
基金项目:国家自然科学基金项目(62062002)、宁夏科学自然基金项目(2022AAC03289)、北方民族大学中央高校基本科研业务费专项资金项目(FWNX09)、北方民族大学校级一般项目(2021XYZJK01).
通讯作者:孙鉴,博士,副教授,研究方向:云计算、任务调度.E-mail:550177201@qq.com
更新日期/Last Update: 2024-03-15