[1]张彩丽,向隆刚,李雅丽.顾及高低速信息的道路限速识别方法[J].南京师大学报(自然科学版),2024,(04):31-38.[doi:10.3969/j.issn.1001-4616.2024.04.004]
 Zhang Caili,Xiang Longgang,Li Yali.Study on Road Speed Limit Identification Taking into Account High and Low Speed Information[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(04):31-38.[doi:10.3969/j.issn.1001-4616.2024.04.004]
点击复制

顾及高低速信息的道路限速识别方法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年04期
页码:
31-38
栏目:
空间数据智能研究
出版日期:
2024-12-15

文章信息/Info

Title:
Study on Road Speed Limit Identification Taking into Account High and Low Speed Information
文章编号:
1001-4616(2024)04-0031-08
作者:
张彩丽1向隆刚2李雅丽3
(1.河南城建学院测绘与城市空间信息学院,河南 平顶山 467000)
(2.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079)
(3.沈阳建筑大学交通与测绘工程学院,辽宁 沈阳 110000)
Author(s):
Zhang Caili1Xiang Longgang2Li Yali3
(1.School of Surveying and Urban Spatial Information,Henan University of Urban Construction,Pingdingshan 467000,China)
(2.State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China)
(3.School of Transportation and Geomatics Engineering,Shenyang Jianzhu University,Shenyang 110000,China)
关键词:
车辆轨迹道路网信息邻接路段高低速信息道路限速识别
Keywords:
vehicle trajectoriesroad network informationadjacent sectionshigh and low speed informationroad speed limit identification
分类号:
P208
DOI:
10.3969/j.issn.1001-4616.2024.04.004
文献标志码:
A
摘要:
随着新兴行业对地图细节丰富度和要素完备性的需求,开展精细可导航路网构建研究是大势所趋,然而基于轨迹数据的道路信息挖掘,多聚焦于路网骨架的识别,较少对道路段限速信息进行识别. 考虑低速与高速路段的轨迹运行速度分布不同,本文基于轨迹数据对高低速路段分别进行建模,开展轨迹数据限速识别优化. 在此基础上融合路网数据限速识别结果,最终完成限速信息的识别. 以武汉市二环路区域与成都市二环路区域为例进行实验,验证了方法的有效性. 实验结果表明:(1)高低速信息分别建模明显提升了轨迹限速识别准确率;(2)融合轨迹数据限速识别优化结果与路网数据限速识别结果也进一步提升了限速识别结果.
Abstract:
With the demand of emerging industries for map detail richness and element completeness,it is a general trend to carry out research on the construction of fine navigable road networks. However,road information mining based on trajectory data focuses more on the identification of road network skeletons and less on the identification of road speed limit information. Considering the difference between the trajectory running speed distribution of the low speed and high speed sections,this paper models the high speed and low speed sections separately based on the trajectory data,and carries out the speed limit identification optimization of the trajectory data. Then on this basis,the speed limit identification results based on road network are fused to complete the identification of speed limit information. Experiments are carried out taking the Second Ring Road area of Wuhan City and Chengdu City as examples to verify the effectiveness of the method. Experimental results show that:(1)the separate modeling of high and low speed information significantly improves the speed limit recognition accuracy based on trajectories;(2)the integration of speed limit recognition optimization results based on trajectories with speed limit recognition results based on road network also further improves the speed limit recognition results.

参考文献/References:

[1]LI J,QIN Q M,HAN J W,et al. Mining trajectory data and geotagged data in social media for road map inference[J]. Transactions in GIS,2015,19(1):1-18.
[2]LILLO-CASTELLANO J M,MORA-JIMÉNEZ I,FIGUERA-POZUELO C,et al. Traffic sign segmentation and classification using statistical learning methods[J]. Neurocomputing,2015,153:286-299.
[3]杨航,张鑫淼,杨冲. 基于卷积神经网络的公路限速牌识别方法[J]. 地理空间信息,2016,14(1):31-33.
[4]王进,任小龙,孙开伟,等. HSV颜色空间下用演化超网络识别道路限速标志的研究[J]. 高技术通讯,2013,23(7):679-684.
[5]刘祥敏. 普通公路限速影响因素与预测模型研究[D]. 济南:山东建筑大学,2020.
[6]宋博. 考虑环境影响的高速公路限速值研究[D]. 西安:长安大学,2018.
[7]GARBER N J,GADIRAJU R. Factors affecting speed variance and its influence on accidents[J]. Transportation research record,1989,1213(1213):64-71.
[8]孙付勇. 基于神经网络的道路通行时间预估方法的设计与实现[D]. 北京:北京交通大学,2019.
[9]唐炉亮,杨雪,任畅,等. 轨迹大数据挖掘与高时空精度道路众包测图[M]. 北京:科学出版社,2019.
[10]张彩丽,向隆刚,李雅丽,等. 基于出租车轨迹的可导航路网构建[J]. 测绘学报,2021,50(12):1650-1662.
[11]廖律超,蒋新华,林铭榛,等. 基于交通轨迹数据挖掘的道路限速信息识别方法[J]. 交通运输工程学报,2015,15(5):118-126.
[12]WINDEN K V,BILJECKI F,STEFAN V D S. Automatic update of road attributes by mining GPS tracks[J]. Transactions in GIS,2016,20(5):664-683.
[13]张彩丽,向隆刚,李雅丽,等. 路段级导航属性信息挖掘[J]. 测绘学报,2024,3(2):367-378.
[14]FERNÁNDEZ-DELGADO M,CERNADAS E,BARRO S,et al. Do we need hundreds of classifiers to solve real world classification problems?[J]. The journal of machine learning research,2014,15(1):3133-3181.
[15]肖湘文,沈校熠,柯长青,等. 基于Sentinel-1A数据的多种机器学习算法识别冰山的比较[J]. 测绘学报,2020,49(4):111-123.
[16]张彩丽,向隆刚,李雅丽,等. 顾及路网与轨迹多模特征的道路等级分类研究[J]. 地球信息科学学报,2022,24(10):1925-1940.
[17]全国交通工程设施(公路)标准化技术委员会.道路交通标志和标线第5部分:限制速度:GB 5768.5—2017[S]. 北京:中国标准出版社,2017.
[18]周志华. 机器学习[M]. 北京:清华大学出版社,2016.
[19]XU Y Y,XIE Z,WU L,et al. Multilane roads extracted from the OpenStreetMap urban road network using random forests[J]. Transactions in GIS,2019,23(2):224-240.

备注/Memo

备注/Memo:
收稿日期:2024-05-23.
基金项目:河南城建学院博士科研启动金资助项目(K-Q2023032)、河南省高等学校重点科研项目(24B420002)、河南城建学院高等教育教学改革研究与实践项目(2024JG158)、辽宁省教育厅青年项目(LJ212410153040)、国家自然科学基金项目(41771474、42071432).
通讯作者:向隆刚,博士,教授,博士生导师,研究方向:轨迹数据分析、时空大数据管理. E-mail:geoxlg@whn.edu.cn
更新日期/Last Update: 2024-12-15