[1]刘新平,孙越泓,刘佛祥.基于投票机制和动态分配价值点的集成超目标优化算法[J].南京师大学报(自然科学版),2024,(04):59-67.[doi:10.3969/j.issn.1001-4616.2024.04.007]
 Liu Xinping,Sun Yuehong,Liu Foxiang.An Ensemble Many-objective Optimization Algorithm Based on Voting and Dynamic Value Point[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(04):59-67.[doi:10.3969/j.issn.1001-4616.2024.04.007]
点击复制

基于投票机制和动态分配价值点的集成超目标优化算法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年04期
页码:
59-67
栏目:
数学
出版日期:
2024-12-15

文章信息/Info

Title:
An Ensemble Many-objective Optimization Algorithm Based on Voting and Dynamic Value Point
文章编号:
1001-4616(2024)04-0059-09
作者:
刘新平1孙越泓12刘佛祥23
(1.南京师范大学数学科学学院,江苏 南京 210023)
(2.大规模复杂系统数值模拟教育部重点实验室,江苏 南京 210023)
(3.南昌大学信息工程学院,江西 南昌 330029)
Author(s):
Liu Xinping1Sun Yuehong12Liu Foxiang23
(1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
(2.Ministry of Education Key Laboratory of NSLSCS,Nanjing 210023,China)
(3.School of Information Engineering,Nanchang University,Nanchang 330029,China)
关键词:
集成框架投票机制超目标优化问题解排序算法
Keywords:
ensemble frameworkvoting mechanismmany-objective optimization problemssolution-sorting algorithms
分类号:
TP18
DOI:
10.3969/j.issn.1001-4616.2024.04.007
文献标志码:
A
摘要:
在超目标优化问题中,目标之间的冲突会导致没有一个解可以同时优化所有目标,求解时存在大量非支配解. 选择合适的解排序算法评估解的质量,对算法性能起着关键作用. 而不同的解排序算法,在处理不同的超目标问题时有着各自的优劣. 因此,本文提出一个基于投票机制和动态分配价值点的集成框架(ensemble many-objective evolutionary algorithm based on voting and dynamic value point,VDVP-EMEA),将不同解排序算法聚合在一起协同工作. 首先,根据每种解排序算法的有效投票率,动态分配每个专家拥有的价值点,有效投票越多的解排序算法,相应赋予更多的价值点,反之则对价值点进行惩罚. 然后使用末位淘汰制,废弃能力最差的专家的投票. 其次,在环境选择过程中,使用精英选择策略,通过投票结果和价值点来定义个体适应度,适应度越大的个体越优先被选择. 最后,为了测试 VDVP-EMEA 算法的性能,进行大量试验,将 VDVP-EMEA 与4种常用的单一解排序算法NSGA-III、SPEA2、BiGE、GrEA和一种先进的集成算法VMEF进行了比较. 实验结果表明,VDVP-EMEA的收敛性和多样性明显优于这些算法.
Abstract:
In many-objective optimization problems,the conflicts among the objectives lead to the situation where solutions cannot optimize all objectives simultaneously,and a large number of non-dominated solutions exist in the process. An appropriate solution-sorting method plays a crucial role in evaluating the quality of solutions and the performance of the algorithm. Generally,different solution-sorting methods have their own pros and cons when handling different many-objective problems. Therefore,an ensemble many-objective evolutionary algorithm based on voting and dynamic value point(VDVP-EMEA)is proposed,which can integrate different solution-sorting methods and cooperate together. First,the value points of each expert are dynamically allocated by the voting success rate of each solution-sorting method,and the solution-sorting method with more voting success rate will be correspondingly assigned more value points. Otherwise,the value points will be punished. The last elimination system is used to cancel the votes of the most inefficient experts. The elite selection strategy is used to define fitness of individuals by voting results and value points,and the individuals with greater fitness value are preferentially selected in the process of environment selection. Finally,a large number of experiments are conducted to test the performance of VDVP-EMEA,and VDVP-EMEA is compared with five advanced many-objective evolutionary algorithms NSGA-III,SPEA2,BiGE,GrEA,and VMEF. Experimental results indicate that the overall performance of VDVP-EMEA is distinctly better than these algorithms.

参考文献/References:

[1]LIN Q Z,CHEN J Y,ZHAN Z H,et al. A hybrid evolutionary immune algorithm for multiobjective optimization problems[J]. IEEE transactions on evolutionary computation,2016,20(5):711-729.
[2]QI Y T,HOU Z T,YIN M L,et al. An immune multiobjective optimization algorithm with differential evolution inspired recombination[J]. Applied soft computing,2015,29:395-410.
[3]WU G H,MALLIPEDDI R,SUGANTHAN P N,et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information sciences,2016,329:329-345.
[4]GONG W Y,FIALHO Á,CAI Z H,et al. Adaptive strategy selection in differential evolution for numerical optimization:An empirical study[J]. Information sciences,2011,181(24):5364-5386.
[5]WANG W J,YANG S Q,LIN Q Z,et al. An effective ensemble framework for multiobjective optimization[J]. IEEE transactions on evolutionary computation,2019,23(4):645-659.
[6]PAL M,BANDYOPADHYAY S. ESOEA:Ensemble of single objective evolutionary algorithms for many-objective optimization[J]. Swarm and evolutionary computation,2019,50:100511.
[7]MALLIPEDDI R,SUGANTHAN P N. Ensemble of constraint handling techniques[J]. IEEE transactions on evolutionary computation,2010,14(4):561-579.
[8]ZHAO S Z,SUGANTHAN P N,ZHANG Q. Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes[J]. IEEE transactions on evolutionary computation,2012,16(3):442-446.
[9]QIU W B,ZHU J H,WU G H,et al. Ensemble many-objective optimization algorithm based on voting mechanism[J]. IEEE transactions on systems,2012,52(3):1716-1730.
[10]DEB K,JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach,Part I:Solving problems with box constrains[J]. IEEE transactions on evolutionary computation,2014,18(4):577-601.
[11]ZITZLER E,LAUMANNS M,THIELE L. SPEA2:improving the strength pareto evolutionary algorithm for multiobjective optimization[C]//Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems. Proceedings of the EUROGEN'2001. Athens. Greece,2001.
[12]YANG S X,LI M Q,LIU X H,et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE transactions on evolutionary computation,2013,17(5):721-736.
[13]LI M Q,YANG S X,LIU X H. Bi-goal evolution for many-objective optimization problems[J]. Artificial intelligence,2015,228:45-65.
[14]YE T,CHENG R,ZHANG X Y,et al. PlatEMO:A MATLAB platform for evolutionary multi-objective optimization[Educational Forum][J]. IEEE computional intelligence magazine,2017,12(4):73-87.
[15]HUBAND S,HINGSTON P,BARONE L,et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE transactions on evolutionary computation,2006,10(5):477-506.
[16]DAS J,DENNIS J E. Normal-boundary intersection:A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM journal on optimization,1998,8(3):631-657.
[17]CZYZZAK P,JASZKIEWICZ A. Pareto simulated annealing:a metaheuristic technique for multi-objective combinatorial optimization[J]. Journal of multi-criteria decision analysis,1998,7(1):34-47.

备注/Memo

备注/Memo:
收稿日期:2024-06-25.
基金项目:大规模复杂系统数值模拟教育部重点实验室开放课题基金资助项目(202409)、国家自然科学基金项目(12471290)、江西省自然科学基金项目(20224BAB212003).
通讯作者:孙越泓,博士,副教授,研究方向:智能优化及图像处理. E-mail:05234@njnu.edu.cn
更新日期/Last Update: 2024-12-15