参考文献/References:
[1]PAN X,HONG X,LI S,et al. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner[J]. Experimental & molecular medicine,2021,53(1):91-102.
[2]ALAMOLHODAEI N S,TSATSAKIS A M,RAMEZANI M,et al. Resveratrol as MDR reversion molecule in breast cancer:an overview[J]. Food and chemical toxicology,2017,103(3):223-232.
[3]KCIUK M,GIELECINSKA A,MUJWAR S,et al. Doxorubicin:an agent with multiple mechanisms of anticancer activity[J]. Cells,2023,12(4):659.
[4]WANG J,ZHOU L,LI Z,et al. YY1 suppresses FEN1 over-expression and drug resistance in breast cancer[J]. BMC cancer,2015,15(1):50.
[5]ZHENG L,JIA J,FINGER L D,et al. Functional regulation of FEN1 nuclease and its link to cancer[J]. Nucleic acids research,2011,39(3):781-794.
[6]YANG F,HU Z,GUO Z. Small-molecule inhibitors targeting FEN1 for cancer therapy[J]. Biomolecules,2022,12(7):1007.
[7]WU H,YAN Y,YUAN J,et al. miR-4324 inhibits ovarian cancer progression by targeting FEN1[J]. Journal of ovarian research,2022,15(1):32.
[8]ABDEL-FATAH T M,RUSSELL R,ALBARAKATI N,et al. Genomic and protein expression analysis reveals flap endonuclease 1(FEN1)as a key biomarker in breast and ovarian cancer[J]. Molecular oncology,2014,8(7):1326-1338.
[9]HE L,ZHANG Y,SUN H,et al. Targeting DNA flap endonuclease 1 to impede breast cancer progression[J]. EBiomedicine,2016,14(11):32-43.
[10]BUKOWSKI K,KCIUK M,KONTEK R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. International journal of molecular sciences,2020,21(9):3233.
[11]AMIRI-KORDESTANI L,BASSEVILLE A,KURDZIEL K,et al. Targeting MDR in breast and lung cancer:discriminating its potential importance from the failure of drug resistance reversal studies[J]. Drug resistance updates,2012,15(1/2):50-61.
[12]SANCAR A,LINDSEY-BOLTZ L A,UNSAL-KACMAZ K,et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints[J]. Annu review of biochemistry,2004,73(1):39-85.
[13]SELVARAJAH J,ELIA A,CARROLL V A,et al. DNA damage-induced S and G2/M cell cycle arrest requires mTORC2-dependent regulation of Chk1[J]. Oncotarget,2015,6(1):427-440.
[14]SUNADA S,SAITO H,ZHANG D,et al. CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity[J]. Biochemical and biophysical research communications,2021,550(2):56-61.
[15]ALLDAY M J,INMAN G J,CRAWFORD D H,et al. DNA damage in human B cells can induce apoptosis,proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective[J]. EMBO journal,1995,14(20):4994-5005.
[16]THOMAS C G,STROM A,LINDBERG K,et al. Estrogen receptor beta decreases survival of p53-defective cancer cells after DNA damage by impairing G2/M checkpoint signaling[J]. Breast cancer research and treatment,2011,127(2):417-427.
[17]ZHANG T,TAN Y,ZHAO R,et al. DNA damage induced by oridonin involves cell cycle arrest at G2/M phase in human MCF-7 cells[J]. Contemporary oncology(pozn),2013,17(1):38-44.
[18]ZHANG R,ZHU L,ZHANG L,et al. PTEN enhances G2/M arrest in etoposide-treated MCF-7 cells through activation of the ATM pathway[J]. Oncology reports,2016,35(5):2707-2714.
[19]CAI X,CHIU Y H,CHEN Z J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling[J]. Molecular cell,2014,54(2):289-296.
[20]LI X D,WU J,GAO D,et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects[J]. Science,2013,341(6152):1390-1394.
[21]WANG Y,LUO J,ALU A,et al. cGAS-STING pathway in cancer biotherapy[J]. Molecular cancer,2020,19(1):136.
[22]ZHAO Y,SIMON M,SELUANOV A,et al. DNA damage and repair in age-related inflammation[J]. Nature reviews immunology,2023,23(2):75-89.
[23]CHANUT R,PETRILLI V. Cytosolic DNA sensing by the cGAS-STING pathway in cancer[J]. Medical sciences(Paris),2019,35(6/7):527-534.
[24]MOTWANI M,PESIRIDIS S,FITZGERALD K A. DNA sensing by the cGAS-STING pathway in health and disease[J]. Nature reviews genetics,2019,20(11):657-674.
[25]DECOUT A,KATZ J D,VENKATRAMAN S,et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nature reviews immunology,2021,21(9):548-569.
[26]CHENG K,WANG X H,HUA Y T,et al. The tissue transglutaminase:a potential target regulating MDR in breast cancer[J]. European review for medical and pharmacological sciences,2020,24(11):6175-6184.
[27]LI J L,WANG J P,CHANG H,et al. FEN1 inhibitor increases sensitivity of radiotherapy in cervical cancer cells[J]. Cancer medicine,2019,8(18):7774-7780.
[28]HE L,LUO L,ZHU H,et al. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer[J]. Molecular oncology,2017,11(6):640-654.
[29]PANTELIDOU C,SONZOGNI O,DE OLIVERIA T M,et al. PARP Inhibitor Efficacy depends on CD8(+)T-cell recruitment via intratumoral sting pathway activation in BRCA:deficient models of triple-negative breast cancer[J]. Cancer discovery,2019,9(6):722-737.
[30]CHABANON R M,MUIRHEAD G,KRASTEV D B,et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer[J]. Journal of clinical investigation,2019,129(3):1211-1228.
[31]STANISZEWSKA A D,ARMENIA J,KING M,et al. PARP inhibition is a modulator of anti-tumor immune response in BRCA-deficient tumors[J]. Oncoimmunology,2022,11(1):2083755.