[1]崔云康,狄云松,陈 静,等.碳纳米管场发射器件放气特性分析及其对场发射性能的影响[J].南京师范大学学报(自然科学版),2017,40(01):151.[doi:10.3969/j.issn.1001-4616.2017.01.022]
 Cui Yunkang,Di Yunsong,Chen Jing,et al.Outgassing Analysis of the CNTs Field Emission Devicesand Its Influence on Field Emission Performance[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):151.[doi:10.3969/j.issn.1001-4616.2017.01.022]
点击复制

碳纳米管场发射器件放气特性分析及其对场发射性能的影响()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年01期
页码:
151
栏目:
·物理学·
出版日期:
2017-03-31

文章信息/Info

Title:
Outgassing Analysis of the CNTs Field Emission Devicesand Its Influence on Field Emission Performance
文章编号:
1001-4616(2017)01-0151-06
作者:
崔云康1狄云松2陈 静3唐春红1
(1.南京工程学院数理部,江苏 南京 211167)(2.南京师范大学物理科学与技术学院,江苏 南京 210023)(3.东南大学电子科学与工程学院,江苏 南京 210096)
Author(s):
Cui Yunkang1Di Yunsong2Chen Jing3Tang Chunhong1
(1.Department of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167,China)(2.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)(3.School of Electronic Science and Engineering,Southeast University,Nanjing
关键词:
碳纳米管放气特性场发射
Keywords:
carbon nanotubeoutgassing characteristicsfield emission
分类号:
O462.4
DOI:
10.3969/j.issn.1001-4616.2017.01.022
文献标志码:
A
摘要:
为了研究场发射冷阴极电流跌落机制,采用四极质谱仪实时分析的方法研究了碳纳米管阴极场发射器件的放气特性及工作状态下器件内残余气体对阴极场发射性能的影响. 结果表明:碳纳米管阴极场发射器件工作时,放出气体的主要成份是H2,CO2,CO; 随着阴极发射电流密度的增加,气体成份的分压也随着增加. 碳纳米管阴极的场发射性能,例如开启场强、阈值场强和场发射电流密度都与放出气体压强密切相关. 碳纳米管阴极在压强为2.1×10-3 Pa的残余气体环境下工作1.5 h后,开启场强和阈值场强相应增加了29.4%和50.0%. 阴极受残余气体影响,一方面阴极发射材料表面功函数增加; 另一方面阴极发射体场增强因子减小. 增大的功函数和减小的场增强因子降低了阴极的场发射性能. 因此,场发射器件放气是阴极电流跌落的重要原因.
Abstract:
To study the mechanism of current degradation of a cold cathode,the ougassing analysis of a field emission diode with screen-printed carbon nanotubes(CNTs)cathode has been taken with a quadrupole mass spectrometer(QMS)in an ultra-high vacuum(UHV)system. It was found that H2,CO2 and CO were outgassed from the diode during the working process. The partial pressure of outgassing increases with the increased emission current density. The field emission properties of the cold cathode,such as turn-on field,threshold field and the emission current density,were largely related to the pressure of the outgases. After the CNTs cathode had 1.5 hour field emission operation at 2.1×10-3 Pa total pressure,the turn-on field and threshold field increased 29.4% and 50.0% respectively compared with their original values. Due to the outgassing,the work function of CNTs cold cathode increased,while the field enhancement factor decreased. Increasing the work function and reducing the field enhancement factor decrease the field emission characteristics of the cathode. Therefore,the outgassing plays very important role in the current degradation for the field emission devices.

参考文献/References:

[1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. DOI:10.1038/354056a0.
[2]SREEKANTH M,GHOSH S,BISWAS P,et al. Improved field emission from indium decorated multi-walled carbon nanotubes[J]. Appl Surf Sci,2016,383:84-89. DOI:10.1016/j.apsusc.2016.04.170.
[3]JEONG J W,KANG J T,CHOI S Y,et al. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter[J]. Appl Phys Lett,2013,102(2):023504. DOI:10.1063/1.4776222.
[4]SARAVANAN A,HUANG B R,YEH C J,et al. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties[J]. Appl Phys Lett,2015,106(23):231602. DOI:10.1063/1.4922370.
[5]DONG C K,LUO H J,CAI J Q,et al. Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale,2016,8(10):5 599-5 604. DOI:10.1039/c5nr08661b.
[6]MOREV S P,ABAN’SHIN N P,GORFINKEL’ B I,et al. Electron-optical systems with planar field-emission cathode matrices for high-power microwave devices[J]. J Commun Technol Electron. 2013,58(4):357-365. DOI:10.1134/S1064226913040116.
[7]SHE J C,XU N S,DENG S Z,et al. Vacuum breakdown of carbon-nanotube field emitters on a silicon tip[J]. Appl Phys Lett,2003,83:2 671-2 673. DOI:10.1063/1.1614437.
[8]XU N S,HUQ S E. Novel Cold cathode materials and applications[J]. Mater Sci Eng R-Rep,2005,48:47-189. DOI:10.1016/j.mser.2004.12.001.
[9]DEAN K A,BURGIN T P,CHALAMALA B R. Evaporation of carbon nanotubes during electron field emission[J]. Appl Phys Lett,2001,79(12):1 873-1 875. DOI:10.1063/1.1402157.
[10]LI Z,WANG C Y. First-principles study of field emission properties of gas adsorption on the carbon nanotube[J]. Chem Phys,2006,330:417-422. DOI:10.1016/j.chemphys.2006.09.014.
[11]薛增泉,吴全德. 电子发射与电子能谱[M]. 北京:北京大学出版社,1993:60-79.
[12]SHEN Y,ZHANG H,XIA L S,et al. Vacuum outgassing behavior of carbon nanotube cathode with high-intensity pulsed electron emission[J]. Plasma Sci Technol,2015,17(2):129-133. DOI:10.1088/1009-0630/17/2/06.
[13]FOMANI A A,GUERRERA S A,VELASQUEZ G L F,et al. Toward amp-level field emission with large-area arrays of Pt-coated self-aligned gated nanoscale tips[J]. IEEE Trans Electron Devices,2014,61(7):2 538-2 546. DOI:10.1109/TED.2014.2322518.
[14]CAI D,LIU L,JU J C,et al. Comparative study on intense emission of velvet and carbon nanotube cathode[J]. Acta Phys Sin,2016,65(4):045202. DOI:10.7498/aps.65.045202.
[15]刘学悫. 阴极电子学[M]. 北京:科学出版社:1980:30-37.
[16]CHEPUSOV A,KOMARSKIY A,KUZNETSOVV. The influence of ion bombardment on emission properties of carbon materials[J]. Appl Surf Sci,2014,306:94-97. DOI:10.1016/j.apsusc.2014.03.188.
[17]LIANG F,CHEN P,ZHAO D G,et al. Investigation of breakdown mechanism during field emission process of AlN thin film microscopic cold cathode[J]. J Vac Sci Technol B,2016,34(1):012201. DOI:10.1116/1.4936383.
[18]REN Z F,HUANG Z P,XU J W,et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science,1998,282(5391):1 105-1 107. DOI:10.1126/science.282.5391.1105.
[19]YEMINI R,MUALLEM M,SHARABANI T,et al. Patterning of forests of carbon nanotubes(CNTs)using copper overlayers as iron catalyst deactivators[J]. J Phys Chem C,2016,120(22):12 242-12 248. DOI:10.1021/acs.jpcc.6b01676.
[20]GHAHARPOUR F,BAHARI A,ABBASI M,et al. Parametric investigation of CNT deposition on cement by CVD process[J]. Constr Build Mater,2016,113:523-535. DOI:10.1016/j.conbuildmat.2016.03.080.
[21]CUI Y K,ZHANG X B,LEI W,et al. Effect of ion bombardment on the field emission property of tetrapod ZnO[J]. J Appl Phys,2010,107:054506. DOI:10.1063/1.3319655.
[22]冯焱,李得天. 四极质谱计在真空检漏中的应用[J]. 真空,2006,43(3):45-47. DOI:10.13385/j.cnki.vacuum.2006.03.014.
[23]胡汉泉,王迁同. 真空物理与技术及其在电子器件中的应用(下册)[M]. 北京:国防工业出版社,1982:39-61.
[24]FOWLER R H,NORDHEIM L W. Electron emission in intense electric fields[J]. Proc Roy Soc,1928,A119:173-181. DOI:10.1098/rspa.1928.0091.
[25]CUI Y K,CHEN J,ZHAO D W,et al. Stable field emission lamps based on well-aligned BaO nanowires[J]. RSC Adv,2014,4(42):22 246-22 250. DOI:10.1039/c4ra00164h.
[26]王金婵. 纳米材料与环境气体相互作用的研究[D]. 南京:东南大学电子科学与技术学院,2009:65-85.

相似文献/References:

[1]程承平,陈贵虎,李伟红,等.碳纳米管扭转引起的力学耦合效应[J].南京师范大学学报(自然科学版),2012,35(04):30.
 Cheng Chengping,Chen Guihu,Li Weihong,et al.Torsion-Induced Behaviors of Single-Walled and Double-Walled Carbon Nanotubes[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):30.
[2]王金剑,王寅,朱小蕾,等.纳米粒子在具有温度梯度的碳纳米管上运动模式的研究[J].南京师范大学学报(自然科学版),2012,35(03):68.
 Wang Jinjian,Wang Yin,Zhu Xiaolei.A Study on Motion Modes of Nanoparticles Supported on Carbon Nanotubes With Temperature Gradient[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):68.
[3]潘吉超,姚飞,任腾飞,等.聚(3,4-乙烯基二氧噻吩)/碳纳米管复合膜修饰电极的电化学制备及其用于8-羟基-2\’-脱氧鸟嘌呤核苷的检测[J].南京师范大学学报(自然科学版),2012,35(02):66.
 Pan Jichao,Yao Fei,Ren Tengfei,et al.Electrochemical Preparation of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composite Film Modified Electrode and Its Application to Determination of 8-Hydroxy-2′-Deoxyguanosine[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):66.
[4]杨红晓,张爱民.碳纳米管限域效应及其催化应用研究进展[J].南京师范大学学报(自然科学版),2011,34(04):64.
 Yang Hongxiao,Zhang Aimin.Confinement in Carbon Nanotubes and Its Catalytic Application[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(01):64.
[5]何向东,罗成林.单壁碳纳米管端口连接过程的计算模拟[J].南京师范大学学报(自然科学版),2010,33(04):44.
 He Xiangdong,Luo Chenglin.Simulation Calculation for SWNT’s Ports Junctions Process[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(01):44.
[6]夏前正,刘姝娜,蔡称心.DNA化学损伤的电化学检测[J].南京师范大学学报(自然科学版),2007,30(04):119.
[7]吕亚芬,印亚静,杜攀,等.铁氧化还原蛋白的直接电化学[J].南京师范大学学报(自然科学版),2006,29(01):53.
 Lü Yafen,Yin Yajing,Du Pan,et al.Direct Electrochemistry of Ferredoxin[J].Journal of Nanjing Normal University(Natural Science Edition),2006,29(01):53.
[8]陆 旭,狄云松.碳纳米管场发射背阴极式三极结构及其模拟[J].南京师范大学学报(自然科学版),2013,36(01):54.
 Lu Xu,Di Yunsong.Back-Cathode Triode Structure for CNT and Its Simulations[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(01):54.

备注/Memo

备注/Memo:
收稿日期:2016-11-03.
基金项目:国家自然科学基金(11504167、61674029)、江苏省自然科学基金(BK20141390)、南京工程学院自然科学基金(QKJB201409、CKJC201602).
通讯联系人:崔云康,博士,副教授,研究方向:纳米场发射技术、纳米光电材料等. E-mail:njcyk@njit.edu.cn
更新日期/Last Update: 1900-01-01