[1]马 宇,张 浩,刘 婷,等.一种“风车”形单元平面反射阵列天线的设计[J].南京师范大学学报(自然科学版),2019,42(02):81-86.[doi:10.3969/j.issn.1001-4616.2019.02.013]
 Ma Yu,Zhang Hao,Liu Ting,et al.A Design of Windmill-Shaped Element Reflectarry Antenna[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):81-86.[doi:10.3969/j.issn.1001-4616.2019.02.013]
点击复制

一种“风车”形单元平面反射阵列天线的设计
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年02期
页码:
81-86
栏目:
·物理学·
出版日期:
2019-06-30

文章信息/Info

Title:
A Design of Windmill-Shaped Element Reflectarry Antenna
文章编号:
1001-4616(2019)02-0081-06
作者:
马 宇张 浩刘 婷章海锋
南京邮电大学电子与光学工程学院、微电子学院,江苏 南京 210023
Author(s):
Ma YuZhang HaoLiu TingZhang Haifeng
College of Electronic and Optical Engineering & College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
反射阵列天线相位补偿固态等离子体可调谐匹配层
Keywords:
reflectarry antennaphase compensationsolid plasmatunablematching layer
分类号:
O441.4
DOI:
10.3969/j.issn.1001-4616.2019.02.013
文献标志码:
A
摘要:
为了改善反射阵列单元相位特性曲线的线性度,扩大相位补偿的覆盖范围,采用了一种新型的反射阵列单元,即在传统的反射阵列单元上方加上一层介质匹配层. 仿真结果表明,相比传统的设计方式,新型反射阵列单元的相位特性曲线线性度得到明显改善,相位补偿实现了0°~360°的完全覆盖. 本文中固态等离子体(GaAs)代替金属工作,利用固态等离子体的可重构特性设计了一款具有动态波束扫描的平面反射阵列天线,反射主波束的方向分别达到了预期设计的15°、20°和25°,并且每个天线的副瓣和主瓣都相差了至少10 dB以上. 通过动态调节固态等离子体的激励状态,即改变反射阵列单元的谐振结构,可以实现空间波束扫描.
Abstract:
In order to improve the linearity of the phase shift curve of the reflective array unit and extend the coverage of the phase compensation,a new type of reflective array unit is adopted,i.e.,a layer of dielectric matching layer is added over the conventional reflective array unit. The simulation results show that compared with the traditional design method,the linearity of the phase shift curve of the new type of reflective array unit is significantly improved,and the phase compensation achieves a completely coverage of 0°~360°. We use the solid plasma to replace the metal,which is realized by GaAs. Therefore,a reflectarry antennas with dynamic beam scanning were designed based on the the reconfigurable properties of solid plasma. The directions of the reflected main beams can concentrate on 15°,20°,and 25°,respectively,which are expected,and each antenna's side lobe and main lobe are at least 10dB different. By dynamically adjusting the excitation state of the solid plasma,i.e.,changing the excitation state of the resonance unit,space beam scanning can be achieved.

参考文献/References:

[1] 邓作,李浩,姜利辉,等. 宽带W波段Flaps天线仿真与设计[J]. 强激光与粒子束,2014,26(6):53-56.
[2]李亚峰,谢拥军,杨锐,等. 交叉振子平面反射阵列天线的分析[J]. 现代电子技术,2009,32(13):24-26.
[3]王云秀,王秉中,李华,等. 平面反射阵列天线的研究进展[J]. 系统工程与电子技术,2008(2):388-392.
[4]CHAHARMIR M R,SHAKER J,CUHACI M,et al. Broadband reflectarray antenna with double cross loops[J]. Electronics letters,2006,42(2):65-66.
[5]HASANI H,PEIXEIRO C. Dual-band,dual-polarized microstrip reflectarray antenna in Ku band[J]. Journal of pediatric psychology,2012,27(5):409-416.
[6]SCHOEN D T,COENEN T,FJ G D A,et al. The planar parabolic optical antenna[J]. Nano letters,2013,13(1):188-193.
[7]RUDGE A W,ADATIA N A. New class of primary-feed antennas for use with offset parabolic-reflector antennas[J]. Electronics letters,1975,11(24):597-599.
[8]MAILLOUX R J. Phased array antenna handbook[J]. Systems engineering & electronics,2011,28(12):1816-1818.
[9]耿莉,谢亚楠,原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展,2017,54(3):213-222.
[10]刘玉佳,辛杰萍,万玲玉,等. 宽视场高增益亚波长结构集光天线的优化设计[J]. 激光技术,2017,41(1):34-39.
[11]李瑶,莫伟成,杨振刚,等. 利用超表面天线阵列产生太赫兹涡旋光束[J]. 激光技术2017,41(5):644-648.
[12]QI M Q,TANG W X,MA H F,et al. Suppressing side-lobe radiations of horn antenna by loading metamaterial lens[J]. Scientific reports,2015,5(5):9113(1-6).
[13]朱亚鹏,张正平,刘桥. 提高微带天线增益的宽带低损左手结构设计[J]. 激光与光电子学进展,2018,55(3):395-400.
[14]ZHU H L,LIU X H,CHEUNG S W,et al. Frequency-reconfigurable antenna using metasurface[J]. IEEE transactions on antennas and propagation,2014,62(1):80-85.
[15]武学英,崔健永,郑伟,等. 星载激光雷达高灵敏信号探测的关键技术研究[J]. 激光技术,2017,41(6):881-885.
[16]KAWAKAMI Y,KUSE R,HORI T,et al. Decoupling of dipole antenna array on patch type meta-surface with parasitic cells[C]//European Conference on Antennas and Propagation. Paris:IEEE,2017:2603-2606.
[17]KRANENBURG R A,LONG S A. Microstrip transmission line excitation of dielectric resonator antennas[J]. Electronics letters,1988,24(18):1156-1157.
[18]ELEFTHERIADES G V,ANTONIADES M A,QURESHI F. Antenna applications of negative-refractive-index transmission-line structures[J]. Iet microwaves antennas & propagation,2007,1(1):12-22.
[19]项阳,钱祖平,施伟,等. 一种基于负折射电路的宽带圆极化微带天线[J]. 电子学报,2009,37(12):2668-2671.
[20]HEIDARI A A,HEYRANI M,NAKHKASH M. A Dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications[J]. Progress in electromagnetics research,2009,92(92):195-208.
[21]HUANG J,POGORZELSKI R J. A Ka-band microstrip reflectarray with elements having variable rotation angles[J]. IEEE Trans on Antennas and Propagation,1998,46(5):650-656.
[22]JAVOR R D,WU X D,CHANG K. Design and performance of a microstrip reflectarray antenna[J]. IEEE Trans on Antennas and Propagation,1995,43(9):932-939.
[23]POZAR D M,METZLER T A. Analysis of a reflectarray antenna using microstrip patches of variable size[J]. Electronics letters,1993,29(8):657-658.
[24]陈虎,郑雪飞,李小秋. 一种微带反射阵列天线单元特性研究[J]. 微波学报,2010,26(S1):145-148.
[25]ENCINAR J A. Design of two-layer printed reflectarrays using patches of variable size[J]. IEEE Trans on Antennas and Propagation,2001,49(10):1403-1410.
[26]余志洋. 固态等离子体重构天线设计与实现[D]. 南京:南京航空航天大学,2016.

备注/Memo

备注/Memo:
收稿日期:2018-07-05.
基金项目:南京邮电大学引进人才科研启动基金(高水平师资)项目(NY217131).
通讯联系人:章海锋,博士,教授,研究方向:电磁超材料、反射阵列天线. E-mail:hanlor@163.com
更新日期/Last Update: 2019-06-30