Miao Xiangyang,Wang Xiaoying,Zhu Qinshu.Highly Sensitive Ag+ ECL Biosensor Based on Gold Nanoparticles Aggregation[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(03):63-70.[doi:10.3969/j.issn.1001-4616.2020.03.011]





Highly Sensitive Ag+ ECL Biosensor Based on Gold Nanoparticles Aggregation
(1.南京师范大学分析测试中心,江苏 南京 210023)(2.苏州健雄职业技术学院医药科技学院,江苏 太仓 215411)
Miao Xiangyang12Wang Xiaoying1Zhu Qinshu1
(1.Analytical and Testing Center,Nanjing Normal University,Nanjing 210023,China)(2.Department of Medical Science and Technology,Suzhou Chien-shiung Institute of Technology,Taicang 215411,China)
C-Ag+-Cgold nanoparticleECLAg+
O657.1 TP212.3
银离子是一种环境污染物,对其进行灵敏的检测非常重要. 本文构建了一种基于金纳米颗粒(AuNPs)聚集的高灵敏Ag+电致化学发光(ECL)生物传感器. 探针 DNA依靠Au-S键连接到金电极(GE)表面,用6-巯基-1-己醇(6-Hydroxy-1-hexanethiol,6-MCH)封闭未结合位点,合成尺寸均一的Au NPs,将其与Link DNA连接,通过与探针 DNA杂交连接到电极表面. 在杂交过程中加入一定浓度的Ag+孵育后,由于C-Ag+-C结构形成,诱导Au NPs大量聚集,提高电子传输效率. 最佳条件下,传感器检测Ag+浓度线性范围为0.5 nmol/L~10 μmol/L和10 μmol/L~500 μmol/L,最低检出限0.25 nmol/L,显示出较好的特异性和稳定性.
Silver ion is an environmental pollutant. It is very important to detect it sensitively. In this paper,a highly sensitive Ag+ ECL biosensor based on gold nanoparticle aggregation is constructed. First,the probe DNA is connected to the surface of the gold electrode(GE)by Au-S bond,and the unbound site is blocked by MCH. Subsequently,size-uniform Au NPs are synthesized and connected to the link DNA and then tied to the electrode surface by hybridization with probe DNA. When a certain concentration of Ag+ is added during the hybridization process,the stable C-Ag+-C structure is formed,which leads to aggregate Au NPs and accelerate the electron transport performance of the sensor. Under optimal conditions,the sensor is used as detector for the concentrations of Ag+. The linear ranges are obtained in the range of 0.5 nmol/L-10 μmol/L and 10 μmol/L-500 μmol/L. The detection limit of the ECL DNA biosensor is 0.25 nmol/L. This biosensor has good specificity and stability.


[1] DAN D K,SUNDARAM C,NGO Y L T,et al. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution[J]. Sensors and actuators B:chemical,2018,255:3284-3291.
[2]XIU Z M,ZHANG Q B,PUPPALA H L,et al. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano letters,2012,12(8):4271-4275.
[3]YIN Y G,SHEN M H,ZHOU X X,et al. Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle[J]. Environmental science & technology,2014,48(16):9366-9373.
[4]GONDIKAS A P,MORRIS A,REINSCH B C,et al. Cysteine-induced modifications of zero-valent silver nanomaterials:implications for particle surface chemistry,aggregation,dissolution,and silver speciation[J]. Environmental science and technology,2012,46:7037-7045.
[5]ZHANG J F,ZHOU Y,YOON J,et al. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions(silver,gold and platinum ions)[J]. Chemical society reviews,2011,40(7):3416-3429.
[6]Gonzalez a R J,Bellido M D,Pinto J J,et al. Determination of silver in seawater by the direct analysis of solvent bars by high resolution continuum source solid sampling graphite furnace atomic absorption spectrometry[J]. Journal of analytical atomic spectrometry,2018,33:1925-1931.
[7]HIROKAWA Y,SHIBATA Y,KONYA T,et al. X-ray fluorescence analysis of Co,Ni,Pd,Ag,and Au in the scrapped printed-circuit-board ash[J]. X-ray spectrometry,2013,42(3):134-140.
[8]RAHMAN A,KUMAR S,BAFANA A,et al. Biosynthetic conversion of Ag+ to highly stable AgO nanoparticles by wild type and cell wall deficient strains of chlamydomonas reinhardtii[J]. Molecules,2019,24(1):doi:10.3390/molecules24010098.
[9]SIKDER M,LEAD J R,THOMAS C G,et al. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis[J]. Science of the total environment,2018,618:597-607.
[10]MOHADESI A,TAHER M A. Stripping voltammetric determination of silver(I)at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4(3H)-one[J]. Talanta,2007,71(2):615-619.
[11]TEO W Z,PUMERA M. Fate ofsilver nanoparticles in natural waters; integfative use of conventional and electrochemical analytical techniquest[J]. RSC advances,2014,4:5006-5011.
[12]QI L,YAN Z,HUO Y,et al. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag+ ions[J]. Biosensors and bioelectronics,2017,87:566-571.
[13]LIU G L,XUAN C L,FENG D Q,et al. Dual-modal fluorescence and light-scattering sensor based on water-soluble carbon dots for silver ions detection[J]. Analytical methods,2017,9(38):5611-5617.
[14]CHEN S,WANG W J,YAN M M,et al. 2-Hydroxy benzothiazole modified rhodol:aggregation-induced emission and dual-channel fluorescence sensing of Hg2+ and Ag+ ions[J]. Sensors and actuators B:chemical,2018,255:2086-2094.
[15]LIU L,LIN H W. Paper-based colorimetric array test strip for selective and semiquantitative multi-ion analysis:simultaneous detection of Hg2+,Ag+,and Cu2+[J]. Analytical chemistry,2014,86(17):8829-8834.
[16]SEUBERT K,GUERRA C F,BICKELHAUPT F M,et al. Chimeric GNA/DNA metal-mediated base pairs[J]. Chemical communications,2011,47:11041-11043.
[17]PARAMANIK B,BAIN D,PATRA A. Making and breaking of DNA-metal base pairs:Hg2+ and Au nanocluster based off/on probe[J]. The journal of physical chemistry C,2016,120:17127-17135.
[18]MEI H,R?l I,Seela F. Ag+-mediated DNA base pairing:extraordinarily stable pyrrolo-dC-pyrrolo-dC pairs binding two silver ions[J]. The journal of organic chemistry,2013,78:9457-9463.
[19]TAN X X,LITAU S,ZHANG X,et al. Single-molecule force spectroscopy of an artificial DNA duplex comprising a silver(I)-mediated base pair[J]. Langmuir,2015,31:11305-11310.
[20]TAKEZAWA Y,SHIONOYA M. Metal-mediated DNA base pairing:alternatives to hydrogen-bonded watson-crick base pairs[J]. Accounts of chemical research,2012,45(12):2066-2076.
[21]DENG L,OUYANG X Y,JIN J Y,et al. Exploiting the higher specificity of silver amalgamation:selective detection of mercury(II)by forming Ag/Hg amalgam[J]. Analytical chemistry,2013,85:8594-8600.
[22]CHUN H J,KIM S,HAN Y D,et al. Water-soluble mercury ion sensing based on the thymine-Hg2+-thymine base pair using retroreflective Janus particle as an optical signaling probe[J]. Biosensors and bioelectronics,2018,104:138-144.
[23]XU J P,SONG Z G,FANG Y,et al. Label-free fluorescence detection of mercury(II)and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative[J]. Analyst,2010,135:3002-3007.
[24]VECCHIONI S,CAPECE M C,TOOMEY E,et al. Construction and characterization of metal ion-containing DNA nanowires for synthetic biology and nanotechnology[J]. Scientific reports,2019,9:doi:10.1038/s41598-019-43316-1.
[25]LIU G P,YUAN Y L,WANG J L. Hemin/G-quadruplex DNAzyme nanowires amplified luminol electrochemiluminescence system and its application in sensing silver ions[J]. RSC advances,2016,6(43):37221-37225.
[26]GONG H,LI X H. Y-type,C-rich DNA probe for electrochemical detection of silver ion and cysteine[J]. Analyst,2011,136(11):2242-2246.
[27]XI H Y,CUI M J,LI W,et al. Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles[J]. Sensors and actuators B:chemical,2017,250:641-646.
[28]LI Y B,YUAN J M,XU Z X. A sensitive fluorescence biosensor for silver ions(Ag+)detection based on C-Ag+-C structure and exonuclease III-assisted dual-recycling amplification[J]. Journal of analytical methods in chemistry,2019,doi:10.1155/2019/3712032.
[29]KLYMENKO O V,SVIR I,AMATORE C. A new approach for the simulation of electrochemiluminescence(ECL)[J]. Chem phys chem,2013,14:2237-2250.
[30]HE S J,DING Z F. Review article progress in electrochemistry and elctrochemilluminescence of metal clusters[J]. Current opinion in electrochemistry,2018,7:109-117.
[31]WU P,HOU X D,XU J J,et al. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials:bridging the valley between two worlds[J]. Chemical reviews,2014,114:11027-11059.
[32]LI X M,SUN L,DING T R. Multiplexed sensing of mercury(II)and silver(I)ions:a new class of DNA electrochemiluminescent-molecular logic gates[J]. Biosensors and bioelectronics,2011,26:3570-3576.
[33]LIU H Y,ZHANG L N,LI M,et al. Electrochemiluminescent molecular logic gates based on MCNTs for the multiplexed analysis of mercury(II)and silver(I)ions[J]. RSC advances,2016,6:26147-26154.
[34]ZHU G C,ZHANG C Y. Functional nucleic acid-based sensors for heavy metal ion assays[J]. Analyst,2014,139:6326-6342.
[35]ZHUO Y,WANG H J,LEI Y M,et al. Electrochemiluminescence biosensing based on different modes of switching signals[J]. Analyst,2018,143:3230-3248.
[36]LI J,LU L P,KANG T F,et al. Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg2+[J]. Biosensors and bioelectronics,2016,77:740-745.
[37]LI X Y,WU Z T,ZHOU X D,et al. Colorimetric response of peptide modified gold nanoparticles:an original assay for ultrasensitive silver detection[J]. Biosensors and bioelectronics,2017,92:496-501.
[38]LEE J,PARK J,LEE H H,et al. Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters[J]. Biosensors and bioelectronics,2015,68:642-647.
[39]LIN Z Z,LI X H,KRAATZ H B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+,Ag+,and Hg2+[J]. Analytical chemistry,2011,83:6896-6901.
[40]MIAO P,HAN K,WANG B D,et al. Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction[J]. Scientific reports,2015,5:9161-9165.
[41]LIU G P,YUAN Y L,WANG J L. Hemin/G-quadruplex DNAzyme nanowires amplified luminol electrochemiluminescence system and its application in sensing silver ions[J]. RSC advances,2016,6:37221-37225.
[42]WANG H Y,FAN X X,WANG Y. Determination of silver ions based on the electrogenerated chemiluminescence of silver ions/peroxydisulfate[J]. Analytical and bioanalytical chemistry,2016,408:7113-7119.
[43]YAN M X,YE J,ZHU Q J,et al. Self-enhanced chemiluminescence of tris(bipyridine)ruthenium(II)derivative nanohybrids:mechanism insight and application for sensitive silver ions detection[J]. Analytical chemistry,2020,92:7265-7272.


[1]蒋彩云,陶恩锦,余 芳,等.基于金纳米颗粒生长的花茶抗氧化性评价[J].南京师范大学学报(自然科学版),2013,36(04):91.
 Jiang Caiyun,Tao Enjin,Yu Fang,et al.Antioxidant Evaluation for Scented Tea Based on Growth of Gold Nanoparticles[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):91.


通讯作者:朱钦舒,博士,高级实验师,研究方向:分析化学. E-mail:zhuqinshu@njnu.edu.cn
更新日期/Last Update: 2020-09-15