[1]宋政文,赵智辉.靶向树突状细胞的结肠癌肿瘤疫苗的制备[J].南京师范大学学报(自然科学版),2020,43(03):112-119.[doi:10.3969/j.issn.1001-4616.2020.03.018]
 Song Zhengwen,Zhao Zhihui.Construction of a Colon Cancer Tumor Vaccine Targeting Dendritic Cells[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(03):112-119.[doi:10.3969/j.issn.1001-4616.2020.03.018]
点击复制

靶向树突状细胞的结肠癌肿瘤疫苗的制备()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第43卷
期数:
2020年03期
页码:
112-119
栏目:
·生物学·
出版日期:
2020-09-30

文章信息/Info

Title:
Construction of a Colon Cancer Tumor Vaccine Targeting Dendritic Cells
文章编号:
1001-4616(2020)03-0112-08
作者:
宋政文赵智辉
南京师范大学生命科学学院,生物化学与生物制品研究所,江苏省分子与医学生物技术重点实验室,江苏 南京 210023
Author(s):
Song ZhengwenZhao Zhihui
School of Life Sciences,Nanjing Normal University,Institute of Biochemistry and Biological Products,Jiangsu Key Laboratory for Molecular and Medical Biotechnology,Nanjing 210023,China
关键词:
树突状细胞结肠癌肿瘤疫苗链霉亲和素生物素
Keywords:
dendritic cellscolon cancertumor vaccinestreptavidinbiotin
分类号:
Q513
DOI:
10.3969/j.issn.1001-4616.2020.03.018
文献标志码:
A
摘要:
目前,由于肿瘤特异性抗原难预测以及这些新抗原能否通过激活性通路被抗原呈递细胞有效摄取等问题还未解决,使得现有肿瘤疫苗的临床治疗并没有达到预期效果,同时,肿瘤细胞抗原的高度唾液酸化修饰会诱发机体产生抑制性免疫应答. 因此,本研究尝试利用链霉亲和素(Streptavidin,SA)与生物素(Biotin)之间几乎不可逆的非共价结合原理,将生物素标记至肿瘤细胞抗原的唾液酸修饰位点,然后与结合有SA的激活性内吞受体的配体进行交联来制备肿瘤疫苗. 首先,构建并表达能靶向树突状细胞(Dendritic cells,DCs)的重组蛋白 SA-mIgG1Fc. 其次,叠氮修饰的非天然糖通过代谢掺入途径标记CT26.WT结肠癌细胞抗原的糖基化修饰位点,利用生物正交反应使肿瘤抗原的叠氮修饰位点共价缀合生物素,获得生物素化广谱肿瘤抗原(Biotinylated broad-spectrum tumor antigen,Biotin-TAg). 最后,将SA-mIgG1Fc与Biotin-TAg按最佳交联比进行交联,从而获得结肠癌肿瘤疫苗,并对其含有的特异性抗原进行检测. 结果显示,利用基因工程方法成功表达出SA-mIgG1Fc,并获得能与SA结合的Biotin-TAg,将SA-mIgG1Fc与Biotin-TAg按最佳交联质量比为1:48进行交联,从而制备出具有靶向性和稳定性的结肠癌肿瘤疫苗,同时检测出制备的肿瘤疫苗中有特异性抗原胰岛素样生长因子1受体(Insulin-like growth factor 1,IGF-1R). 本研究在方法学上为研制新型肿瘤疫苗奠定了基础.
Abstract:
At present,the issues of predication difficulty for tumor specificity antigens and the ability of these new antigens to be effectively taken up by antigen presenting cells have not been resolved,hence the expected clinical treatment of tumor vaccines has not been achieved,meanwhile,the highly sialylated modification of tumor cell antigens can induce a suppressive immune response in the body. Therefore,this study attempted to use the almost irreversible non-covalent binding principle between Streptavidin(SA)and biotin to cross-link the biotin to the sialic acid modification site of the tumor cell antigen and then to cross-link it with the ligands that bind the activated endocytic receptors of SA to prepare the tumor vaccine. Firstly,the recombinant protein SA-mIgG1Fc that targets dendritic cells(DCs)was constructed and expressed. Secondly,azide-modified unnatural sugars labelled CT26.WT colon cancer cell antigen glycosylation sites via metabolic incorporation pathway,then the biotinylated broad-spectrum tumor antigen(Biotin-TAg)was obtained by covalently conjugating biotin with the azide modification site of the tumor antigen using a biological orthogonal reaction. Finally,the colon cancer tumor vaccine was obtaiend by cross-linking SA-mIgG1Fc with Biotin-TAg at an optimal cross-linked ratio,and the specific antigen contained in which was detected. The results showed that the SA-mIgG1Fc was successfully expressed using genetic engineering methods,and Biotin-TAg capable of binding to SA was obtained,the targeted and stable colon cancer tumor vaccine was prepared by cross-linking SA-mIgG1Fc with Biotin-TAg at an optimal cross-linked mass ratio of 1:48,at the same time,the expression of the specific antigen insulin growth factor-1 receptor(IGF-1R)in the prepared tumor vaccine was detected. This study laid a foundation for the development of a novel tumor vaccine based on methodology.

参考文献/References:

[1] BRAY F,FERLAY J,SOERJOMATARAM I,et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a cancer journal for clinicians,2018,68(6):394-424.
[2]CHEN W,ZHENG R,BAADE P D,et al. Cancer statistics in China,2015[J]. CA:a cancer journal for clinicians,2016,66(2):115-132.
[3]FENG R M,ZONG Y N,CAO S M,et al. Current cancer situation in China:good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer communications,2019,39(1):22.
[4]YAGHOUBI N,SOLTANI A,GHAZVINI K,et al. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer[J]. Biomedicine & pharmacotherapy,2019,110:312-318.
[5]XIAO Y,FREEMAN G J. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy[J]. Cancer discovery,2015,5(1):16-18.
[6]GUAN Q,MA Y,HILLMAN C L,et al. Development of recombinant vaccines against IL-12/IL-23 p40 and in vivo uation of their effects in the downregulation of intestinal inflammation in murine colitis[J]. Vaccine,2009,27(50):7096-7104.
[7]HANZEL J,D’HAENS G R. Anti-interleukin-23 agents for the treatment of ulcerative colitis[J]. Expert opinion on biological therapy,2019:1-8.
[8]BENVENUTI F. The dendritic cell synapse:a life dedicated to T cell activation[J]. Frontiers in immunology,2016,7:1-5.
[9]KADOWAKI N. Dendritic cells:a conductor of T cell differentiation[J]. Allergology international:official journal of the Japanese Society of Allergology,2007,56(3):193-199.
[10]SIEGEL R L,MILLER K D,JEMAL A. Cancer statistics,2018[J]. CA:A cancer journal for clinicians,2018,68(1):7-30.
[11]GIL M,BIENIASZ M,WIERZBICKI A,et al. Targeting a mimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+T cell responses in tumor-bearing mice[J]. Journal of immunology,2009,183(10):6808-6818.
[12]SEDLIK C,ORBACH D,VERON P,et al. A critical role for Syk protein tyrosine kinase in Fc receptor-mediated antigen presentation and induction of dendritic cell maturation[J]. Journal of immunology,2003,170(2):846-852.
[13]BOURNAZOS S,RAVETCH J V. Diversification of IgG effector functions[J]. International immunology,2017,29(7):303-310.
[14]CZECH B,HANNON G J. Small RNA sorting:matchmaking for argonautes[J]. Nature reviews genetics,2011,12(1):19-31.
[15]PERDICCHIO M,ILARREGUI J M,VERSTEGE M I,et al. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells[J]. Proceedings of the national academy of sciences of the United States of America,2016,113(12):3329-3334.
[16]CHEN W,ZHENG R,BAADE P D,et al. Cancer statistics in China,2015[J]. CA:A cancer journal for clinicians,2016,66(2):115-132.
[17]BAI L,HU Z,WANG F,et al. Generation of streptavidin-tagged human-granulocyte macrophage colony-stimulating factor fusion proteins[J]. Journal of Southern Medical University,2012,32(10):1389-1393.
[18]NING X,GUO J,WOLFERT M A,et al. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions[J]. Angewandte chemie,2008,47(12):2253-2255.
[19]SANO T,CANTOR C R. Streptavidin-containing chimeric proteins:design and production[J]. Methods in enzymology,2000,326:305-311.
[20]KAWAMATA T,TOMARI Y. Making RISC[J]. Trends in biochemical sciences,2010,35(7):368-376.
[21]NAKAMURA M,MIE M,FUNABASHI H,et al. Construction of streptavidin-luciferase fusion protein for ATP sensing with fixed form[J]. Biotechnology letters,2004,26(13):1061-1066.
[22]SABADO R L,BALAN S,BHARDWAJ N. Dendritic cell-based immunotherapy[J]. Cell research,2017,27(1):74-95.
[23]SHINDE P,MELINKERI S,SANTRA M K,et al. Autologous hematopoietic stem cells are a preferred source to generate dendritic cells for immunotherapy in multiple myeloma patients[J]. Frontiers in immunology,2019,10:1079.
[24]DRAUBE A,KLEIN G N,MATTHEUS S,et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer:a systematic review and meta-analysis[J]. PloS one,2011,6(4):e18801.
[25]PHAM G H,IGLESIAS B V,GOSSELIN E J. Fc receptor-targeting of immunogen as a strategy for enhanced antigen loading,vaccination,and protection using intranasally administered antigen-pulsed dendritic cells[J]. Vaccine,2014,32(40):5212-5220.

备注/Memo

备注/Memo:
收稿日期:2020-03-02.
基金项目:国家自然科学基金面上项目(81273232).
通讯作者:赵智辉,博士,教授,研究方向:肿瘤免疫治疗. E-mail:Zhaozhihui1964_@aliyun.com
更新日期/Last Update: 2020-09-15