[1]胡 程,丁正山,穆学青,等.长江经济带旅游交通碳排放时空演变及驱动因素[J].南京师大学报(自然科学版),2022,(01):40-48.[doi:10.3969/j.issn.1001-4616.2022.01.007]
 Hu Cheng,Ding Zhengshan,Mu Xueqing,et al.The Spatio-Temporal Evolution and Driving Factors of Carbon Dioxide Emissions From Tourism Transportation in the Yangtze River Economic Belt[J].Journal of Nanjing Normal University(Natural Science Edition),2022,(01):40-48.[doi:10.3969/j.issn.1001-4616.2022.01.007]
点击复制

长江经济带旅游交通碳排放时空演变及驱动因素()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2022年01期
页码:
40-48
栏目:
·地理学·
出版日期:
2022-03-15

文章信息/Info

Title:
The Spatio-Temporal Evolution and Driving Factors of Carbon Dioxide Emissions From Tourism Transportation in the Yangtze River Economic Belt
文章编号:
1001-4616(2022)01-0040-09
作者:
胡 程12丁正山12穆学青12郭向阳12杜钟婧12
(1.南京师范大学地理科学学院,江苏 南京 210023)(2.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
Author(s):
Hu Cheng12Ding Zhengshan12Mu Xueqing12Guo Xiangyang12Du Zhongjing12
(1. School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
关键词:
旅游交通碳排放时空演变LMDI分解模型驱动因素长江经济带
Keywords:
tourism transportationcarbon dioxide emissionsspatio-temporal evolutionLMDI decomposition methoddriving factorthe Yangtze River Economic Belt
分类号:
F592 X24
DOI:
10.3969/j.issn.1001-4616.2022.01.007
文献标志码:
A
摘要:
基于长江经济带1998—2018年各省(市)的面板数据,运用“自下而上”法测度其旅游交通碳排放量,探究其时序演变特征与空间格局,并建立旅游交通碳排放的Kaya恒等式,运用LMDI分解法揭示不同驱动因素对旅游交通碳排放变化的贡献程度. 研究表明:(1)关于时序变化趋势,长江经济带旅游交通碳排放整体呈上升态势,大体可以划分为3个阶段:1998—2003年,碳排放量以10%左右的速率小幅增长; 2004—2009年,碳排放增长率整体较高,峰值出现在2004年(32.12%); 2010年以后,碳排放增长率回落至10%左右.(2)关于空间分布特征,长江经济带旅游交通碳排放总体呈现“东西高中间低”的空间格局,长江上游的四川省与长江下游的上海市在空间上形成了两个明显的高值区.(3)关于驱动因素,旅游交通碳排放的促增因素为旅游者规模、旅游消费水平和能源强度,促降因素主要为旅游产业贡献度、旅游交通运输强度和能源结构,其中旅游者规模是首要的促增因素,旅游产业贡献度是主要的促降因素.
Abstract:
Based on the panel data of the Yangtze River Economic Belt from 1998 to 2018,the“bottom-up”method was used to measure carbon dioxide emissions from tourism transportation. The temporal evolution characteristics and spatial pattern were explored. Meanwhile,the Kaya identity of carbon dioxide emissions from tourism transportation was established. The LMDI decomposition method was chose to reveal the degree of contribution of different driving factors to the changes in carbon dioxide emissions from tourism transportation. Research shows that:(1)Regarding the time-series trend,the overall carbon dioxide emissions from tourism transportation in the Yangtze River Economic Belt is on the rise,which can be roughly divided into three stages:1998-2003,carbon emissions increased slightly at a rate of about 10%; 2004-2009,the overall growth rate of carbon dioxide emissions was relatively high,with a peak in 2004(32.12%); After 2010,the growth rate of carbon dioxide emissions dropped to about 10%.(2)Regarding the characteristics of spatial distribution,the overall carbon dioxide emissions from tourism transportation in the Yangtze River Economic Belt presents a spatial pattern of “high in the east and west,low in the middle”. Sichuan on the upper reaches of the Yangtze River and Shanghai on the lower reaches of the Yangtze River have formed two distinct high-value areas spatially.(3)Regarding the driving factors,the factors that promote the increase of carbon dioxide emissions from tourism transportation are the scale of tourists,the level of tourism consumption,energy intensity. The factors that promote the decline are mainly the contribution of the tourism industry,the intensity of tourism transportation,the energy structure,of which the scale of tourists is the most important promoting factor,the contribution of the tourism industry is the main factor promoting decline.

参考文献/References:

[1] 刘畅,韩梅,王洪桥,等. 长白山景区旅游交通碳足迹时空结构研究[J]. 生态经济,2018,34(4):70-74.
[2]BECKEN S,SIMMONS D G,FRAMPTON C. Energy use associated with different travel choices[J]. Tourism management,2003,24(3):267-277.
[3]石培华,吴普. 中国旅游业能源消耗与CO2排放量的初步估算[J]. 地理学报,2011,66(2):235-243.
[4]BECKEN S,SIMMONS D G. Understanding energy consumption patterns of tourist attractions and activities in New Zealand[J]. Tourism management,2002,23(4):343-354.
[5]黄震方,陈娱,黄睿,等. 江苏省高速公路的客流空间格局与网络组团结构——基于联网收费大数据分析[J]. 地理科学,2021,41(6):998-1008.
[6]杜鹏,杨蕾. 中国旅游交通碳足迹特征分析与低碳出行策略研究[J]. 生态经济,2015,31(2):59-63.
[7]KUO N W,CHEN P H. Quantifying energy use,carbon dioxide emission,and other environmental loads from island tourism based on a life cycle assessment approach[J]. Journal of cleaner production,2009,17(15):1324-1330.
[8]吴文化. 我国交通运输行业能源消费和排放与典型国家的比较[J]. 中国能源,2007,29(10):19-22.
[9]贾文通,黄震方,刘俊,等. 高铁对区域旅游“时空压缩”效应的测度与分析——以长江经济带为例[J]. 地理研究,2021,40(6):1785-1802.
[10]蒋自然,金环环,王成金,等. 长江经济带交通碳排放测度及其效率格局(1985—2016年)[J]. 环境科学,2020,41(6):2972-2980.
[11]孙晋坤. 区域旅游交通碳排放测度模型及实证研究[D]. 南京:南京大学,2015.
[12]HUANG Z,CAO F,JIN C,et al. Carbon emission flow from self-driving tours and its spatial relationship with scenic spots:a traffic-related big data method[J]. Journal of cleaner production,2017,142(2):946-955.
[13]陶玉国,黄震方,史春云. 基于替代式自下而上法的区域旅游交通碳排放测度[J]. 生态学报,2015,35(12):4224-4233.
[14]吴普. 离岸岛屿目的地旅游交通能耗与CO2排放测算——以海口市为例[J]. 旅游学刊,2014,29(8):110-116.
[15]李伯华,刘云鹏,窦银娣. 旅游风景区旅游交通系统碳足迹评估及影响因素分析——以南岳衡山为例[J]. 资源科学,2012,34(5):956-963.
[16]王佳,薛景洁. 旅游交通碳排放测算及影响因素分析[J]. 统计与决策,2016,32(13):61-64.
[17]马慧强,刘嘉乐,弓志刚. 山西省旅游交通碳排放测度及其演变机理[J]. 经济地理,2019,39(4):223-231.
[18]郭朝先. 中国二氧化碳排放增长因素分析——基于SDA分解技术[J]. 中国工业经济,2010,38(12):47-56.
[19]王凯,邵海琴,周婷婷,等. 基于STIRPAT模型的中国旅游业碳排放影响因素分析[J]. 环境科学学报,2017,37(3):1185-1192.
[20]BECKEN S,PATTERSON M. Measuring national carbon dioxide emissions from tourism as a key step towards achieving sustainable tourism[J]. Journal of sustainable tourism,2006,14(4):323-338.
[21]DWYER L,FORSYTH P,SPURR R,et al. Estimating the carbon footprint of Australian tourism[J]. Journal of sustainable tourism,2010,18(3):355-376.
[22]魏艳旭,孙根年,马丽君,等. 中国旅游交通碳排放及地区差异的初步估算[J]. 陕西师范大学学报(自然科学版),2012,40(2):76-84.
[23]窦银娣,刘云鹏,李伯华,等. 旅游风景区旅游交通系统碳足迹评估——以南岳衡山为例[J]. 生态学报,2012,32(17):5532-5541.
[24]包战雄,袁书琪,陈光水. 不同游客吸引半径景区国内旅游交通碳排放特征比较[J]. 地理科学,2012,32(10):1168-1175.
[25]TANG C,ZHONG L,NG P. Factors that influence the tourism industry’s carbon emissions:a tourism area life cycle model perspective[J]. Energy policy,2017,109:704-718.
[26]陶玉国,黄震方,吴丽敏,等. 江苏省区域旅游业碳排放测度及其因素分解[J]. 地理学报,2014,69(10):1438-1448.
[27]UNWTO,UNEP,WMO. Climate change and tourism:responding to global challenges[R]. Madrid:UNWTO,2008.
[28]林伯强,刘希颖. 中国城市化阶段的碳排放:影响因素和减排策略[J]. 经济研究,2010,45(8):66-78.
[29]张国兴,苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论,2020,32(12):283-294.
[30]ANG B W. Decomposition analysis for policymaking in energy:which is the preferred method?[J]. Energy policy,2004,32:1131-1139.

备注/Memo

备注/Memo:
收稿日期:2021-09-08.
基金项目:国家自然科学基金项目(41961021、41671147)、江苏省科研创新计划项目(KYCX21_1295).
通讯作者:丁正山,博士,教授,博士生导师,研究方向:区域发展与旅游地理. E-mail:dingzhengshan@263.net
更新日期/Last Update: 1900-01-01