[1]李二超,高振磊.改进粒子速度和位置更新公式的粒子群优化算法[J].南京师大学报(自然科学版),2022,(01):118-126.[doi:10.3969/j.issn.1001-4616.2022.01.017]
 Li Erchao,Gao Zhenlei.Particle Swarm Optimization Algorithm With Improved Particle Velocity and Position Update Formula[J].Journal of Nanjing Normal University(Natural Science Edition),2022,(01):118-126.[doi:10.3969/j.issn.1001-4616.2022.01.017]
点击复制

改进粒子速度和位置更新公式的粒子群优化算法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2022年01期
页码:
118-126
栏目:
·计算机科学与技术·
出版日期:
2022-03-15

文章信息/Info

Title:
Particle Swarm Optimization Algorithm With Improved Particle Velocity and Position Update Formula
文章编号:
1001-4616(2022)01-0118-09
作者:
李二超高振磊
(兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050)
Author(s):
Li ErchaoGao Zhenlei
(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
关键词:
粒子群优化自适应Logistic混沌收敛速度寻优精度
Keywords:
particle swarm optimizationadaptiveLogistic chaosconvergence rateoptimization precision
分类号:
TP273
DOI:
10.3969/j.issn.1001-4616.2022.01.017
文献标志码:
A
摘要:
针对粒子群优化算法求解精度低、局部搜索能力差、进化后期收敛速度慢等问题,本文提出一种改进粒子速度和位置更新公式的粒子群优化算法(particle swarm optimization algorithm with improved particle velocity and position update formula,IPSO-VP). IPSO-VP算法提出一种自适应粒子速度和位置更新策略,采用基于Logistic混沌呈非线性变化的惯性权重,以此来加快算法的收敛速度、平衡算法的全局和局部搜索能力、提高收敛精度. 最后将本文所提算法与6个改进粒子群算法在12个测试函数上进行寻优比较,结果表明,本文所提算法在收敛速度和寻优精度方面均优于其他6种改进算法.
Abstract:
Particle swarm optimization algorithm with improved particle velocity and position update formula(IPSO-VP)is proposed to solve the problems of low solution precision,poor local search ability and slow convergence rate in the later stage of evolution. IPSO-VP algorithm proposes an adaptive particle velocity and position update strategy,which adopts the inertia weight based on Logistic chaos,which is nonlinear,to accelerate the convergence rate,balance the global and local search ability of the algorithm,and improve the convergence precision. Finally,the proposed algorithm is compared with six improved particle swarm optimization algorithms on twelve test functions.Simulation results show that the proposed algorithm is superior to the other six improved particle swarm optimization algorithms in terms of convergence rate and optimization precision.

参考文献/References:

[1] KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks,Perth,WA,Australia. IEEE,1995,4:1942-1948.
[2]LIAN J,YU W,XIAO K,et al. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm optimization algorithm[J]. Mathematical problems in engineering,2020(3):1-20.
[3]居佳琪,王琦,唐小波,等. 基于双重粒子群算法的电动汽车参与配网优化调度[J]. 南京师范大学学报(工程技术版),2018,18(1):11-23.
[4]程泽,董梦男,杨添剀,等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报,2014,29(9):245-252.
[5]韦苗苗,江铭炎. 基于粒子群优化算法的多阈值图像分割[J]. 山东大学学报(工学版),2005,35(6):118-121.
[6]王凌,刘波. 微粒群优化与调度算法[M]. 北京:清华大学出版社,2008.
[7]SHI Y,EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence(Cat. No. 98TH8360),Anchorage,AK,USA. 1998,4:69-73.
[8]LIU H,ZHANG X W,TU L P. A modified particle swarm optimization using adaptive strategy[J]. Expert systems with applications,2020,152:113353.
[9]姜建国,田旻,王向前,等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报,2012,39(4):74-80.
[10]顾明亮,李旻. 基于动态调整惯性权重的混合粒子群算法[J]. 计算机与现代化,2018(6):25-29.
[11]DEEP K,BANSAL J C. Mean particle swarm optimisation for function optimization[J]. International journal of computational intelligence studies,2009,1(1):72-92.
[12]胡旺,李志蜀. 一种更简化而高效的粒子群优化算法[J]. 软件学报,2007,18(4):861-868.
[13]LIU H R,CUI J C,LU Z D,et al. A hierarchical simple particle swarm optimization with mean dimensional information[J]. Applied soft computing,2019,76:712-725.
[14]陆松建,司伟立,韩娟,等. 逃逸均值简化粒子群优化算法[J]. 计算机工程与设计,2020,41(9):2623-2629.
[15]ZHANG X W,LIU H,ZHANG T,et al. Terminal crossover and steering-based particle swarm optimization algorithm with disturbance[J]. Applied soft computing,2019,85:105841.
[16]CHENG R,JIN Y. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information sciences,2015,291:43-60.
[17]GAO W F,LIU S Y,HUANG L L. Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique[J]. Communications in nonlinear science & numerical simulation,2012,17(11):4316-4327.
[18]吴润秀,孙辉,朱德刚,等. 具有高斯扰动的最优粒子引导粒子群优化算法[J]. 小型微型计算机系统,2016,37(1):146-151.

相似文献/References:

[1]朱 莹,刘学军,赵 静.DEM内插邻域自适应确定方法[J].南京师大学报(自然科学版),2013,36(01):122.
 Zhu Ying,Liu Xuejun,Zhao Jing.An Adaptive Method of Determining DEM Interpolation Neighbors[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(01):122.
[2]屈正庚,杨 川.基于改进蚁群算法的移动机器人全局轨迹规划研究[J].南京师大学报(自然科学版),2015,38(01):81.
 Qu Zhenggeng,Yang Chuan.Research on Global Path Planning for Mobile Robot Based onImproved Ant Colony Optimization Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):81.
[3]杨 洋,王汝传.增强现实中基于LBS的双重匿名位置隐私保护方法[J].南京师大学报(自然科学版),2018,41(03):42.[doi:10.3969/j.issn.1001-4616.2018.03.007]
 Yang Yang,Wang Ruchuan.Double Anonymity Location Privacy ProtectionBased on LBS in Augment Reality[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):42.[doi:10.3969/j.issn.1001-4616.2018.03.007]
[4]曹文梁,康岚兰,王 石.动态环境下的自适应反向扩散演化算法[J].南京师大学报(自然科学版),2020,43(04):119.[doi:10.3969/j.issn.1001-4616.2020.04.017]
 Cao Wenliang,Kang Lanlan,Wang Shi.An Adaptively Reversed Diffuse Evolutionary Algorithmin Dynamic Environments[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(01):119.[doi:10.3969/j.issn.1001-4616.2020.04.017]

备注/Memo

备注/Memo:
收稿日期:2021-08-31.
基金项目:国家自然科学基金项目(61763026).
通讯作者:李二超,博士,教授,博士生导师,研究方向:多目标优化、人工智能、进化计算. E-mail:lecstarr@163.com
更新日期/Last Update: 1900-01-01