[1]李 粉,刘新鹤,高铭悦,等.日本对虾miR-34靶基因预测及其生物信息学分析[J].南京师大学报(自然科学版),2022,(02):52-62.[doi:10.3969/j.issn.1001-4616.2022.02.007]
 Li Fen,Liu Xinhe,Gao Mingyue,et al.Marsupenaeus japonicus shrimp miR-34 Target Gene Prediction and Bioinformatics Analysis[J].Journal of Nanjing Normal University(Natural Science Edition),2022,(02):52-62.[doi:10.3969/j.issn.1001-4616.2022.02.007]
点击复制

日本对虾miR-34靶基因预测及其生物信息学分析()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2022年02期
页码:
52-62
栏目:
·生物学·
出版日期:
2022-05-15

文章信息/Info

Title:
Marsupenaeus japonicus shrimp miR-34 Target Gene Prediction and Bioinformatics Analysis
文章编号:
1001-4616(2022)02-0052-11
作者:
李 粉刘新鹤高铭悦徐 晨徐俊颖史莹华崔亚垒
(河南农业大学动物科技学院,河南 郑州 450046)
Author(s):
Li FenLiu XinheGao MingyueXu ChenXu JunyingShi YinghuaCui Yalei
(College of Animal Science and Technology,Henan Agricultural University,Zhengzhou 450046,China)
关键词:
日本对虾mja-miR-34靶基因生物信息学分析
Keywords:
Marsupenaeus japonicus shrimpmja-miR-34target genesbioinformatic analysis
分类号:
S9
DOI:
10.3969/j.issn.1001-4616.2022.02.007
文献标志码:
A
摘要:
已有研究表明日本对虾(Marsupenaeus japonicus shrimp)miR-34(mja-miR-34)参与调控白斑综合症病毒(white spot syndrome virus,WSSV)的感染,但其调控的宿主基因还未具体阐述. 本研究首先比对了miR-34在17个物种中的序列,并使用TargetScan 5.1和miRanda预测了miR-34调控的宿主基因. 结果显示,miR-34在物种进化过程中具有高度保守性; mja-miR-34可靶向作用于242个宿主编码的基因,且在病毒感染不同时间段呈现差异表达; 利用GO注释和KEGG信号通路富集分析结果表明,mja-miR-34的靶基因参与细胞代谢、细胞信号转导、免疫系统以及遗传信息的调控等过程; mja-miR-34在对虾体内可调控靶基因(translation initiation factor)的表达. 结果说明mja-miR-34及其靶基因参与病毒感染等多个细胞进程,但还有待进一步验证. 本研究可为mja-miR-34靶基因的鉴定及其生物学功能的研究提供数据支持和理论指导.
Abstract:
Previous study has shown that miR-34(mja-miR-34)of Marsupenaeus japonicus shrimp is involved in the regulation of white spot syndrome virus(WSSV)infection,but the host genes regulated by mja-miR-34 have not yet been elucidated. In this study,the sequences of miR-34 in 17 species were firstly compared,and the target genes of shrimp regulated by miR-34 were predicted by TargetScan 5.1 and miRanda. The results showed that miR-34 was highly conserved during species evolution; mja-miR-34 could target 242 host-encoded genes and was differentially expressed in different time periods of virus infection; the target genes of mja-miR-34 were involved in the regulation of multiple cellular process of cell metabolism,cell signal transduction,immune system and genetic information analyzed by GO annotation and KEGG signal pathway enrichment analysis. mja-miR-34 can regulate the expression of target gene translation initiation factor in shrimp in vivo. These results indicated that mja-miR-34 and its target genes were involved in multiple cellular processes such as virus infection,but further verification was required. This study can provide data support and theoretical guidance for the characterization of mja-miR-34 target genes and the investigation of their biological functions.

参考文献/References:

[1] BARTEL D P. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.
[2]CAI X,HAGEDORN C H,CULLEN B R. Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs [J]. RNA,2004,10(12):1957-1966.
[3]LEE Y,KIM M,HAN J,et al. MicroRNA genes are transcribed by RNA polymerase II[J]. The EMBO journal,2004,23(20):4051-4060.
[4]HAMMOND S M,BOETTCHER S,CAUDY A A,et al. Argonaute2,a link between genetic and biochemical analyses of RNAi[J]. Science,2001,293(5532):1146-1150.
[5]TABARA H,SARKISSIAN M,KELLY W G,et al. The rde-1 gene,RNA interference,and transposon silencing in C. elegans[J]. Cell,1999,99(2):123-132.
[6]陈功义,赵银丽,李国喜,等. 鲤鱼脾脏中保守miRNA的鉴定 [J]. 中国生物化学与分子生物学报,2015,31(6):636-644.
[7]DANG L T,KONDO H,AOKI T,et al. Engineered virus-encoded pre-microRNA(pre-miRNA)induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line:convergence of RNAi-related pathways and IFN-related pathways in antiviral response[J]. Antiviral research,2008,80(3):316-323.
[8]LEWIS B P,BURGE C B,BARTEL D P. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J]. Cell,2005,120(1):15-20.
[9]SELCUKLU S D,DONOGHUE M T,REHMET K,et al. MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells[J]. Journal of biological chemistrym,2012,287(35):29516-29528.
[10]LE M T,XIE H,ZHOU B,et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets[J]. Molecular and bellular biology,2009,29(19):5290-5305.
[11]HE L,HE X,LIM L P,et al. A microRNA component of the p53 tumour suppressor network[J]. Nature,2007,447(7148):1130-1134.
[12]SUN F,FU H,LIU Q,et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest[J]. FEBS letters,2008,582(10):1564-1568.
[13]YANG S,LI Y,GAO J,et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1[J]. Oncogene,2013,32(36):4294-4303.
[14]XI L,ZHANG Y F,KONG S N,et al. MiR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression[J]. Bioscience reports,2018,38(3):BSR20180078.
[15]CHANG T C,WENTZEL E A,KENT O A,et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Molecular cell,2007,26(5):745-752.
[16]AXTELL M J. Evolution of microRNAs and their targets:are all microRNAs biologically relevant?[J]. Biochimica et biophysica acta,2008,1779(11):725-734.
[17]GOTTWEIN E,MUKHERJEE N,SACHSE C,et al. A viral microRNA functions as an orthologue of cellular miR-155 [J]. Nature,2007,450(7172):1096-1099.
[18]SKALSKY R L,SAMOLS M A,PLAISANCE K B,et al. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155[J]. Journal of virology,2007,81(23):12836-12845.
[19]CUI Y L,YANG X Y,ZHANG X B. Shrimp miR-34 fromshrimp stress response to virus infection suppresses tumorigenesis of breast cancer [J]. Molecular therapy nucleic acids,2017,9(9):387-398.
[20]CUI Y L,HUANG T Z,ZHANG X B. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRN[J]. Open biology,2015.5(12):150126.
[21]CUI Y,WAN H,ZHANG X. MiRNA in food simultaneously controls animal viral disease and human tumorigenesis[J]. Molecular therapy-nucleic acids,2021(23):995-1006.
[22]付强,岳巧娴,宋鹏琰,等. 绵羊miR-150靶基因预测及生物信息学分析 [J]. 中国畜牧兽医,2021,48(7):2333-2341.
[23]潘翠丽,汪书哲,王兴平,等. 牛miR-504靶基因对奶牛乳房炎调控机制的预测分析 [J]. 中国生物制品学杂志,2021,34(7):804-810.
[24]刘东花,刘丽,来进成,等. 牦牛miR-652靶基因预测及生物信息学分析 [J]. 中国草食动物科学,2021,41(3):31-35.
[25]胡文铧,范欢,陈婷,等. miR-497的生物信息学分析及其在肺腺癌中表达的验证 [J]. 现代肿瘤医学,2021,29(5):801-806.
[26]刘新博,吴德全. 微小RNA-155对消化系统肿瘤的调控作用及机制研究进展 [J]. 疑难病杂志,2021,20(7):736-739.
[27]刘颖,赵庆丽,乔如丽,等. MiR-132-3p靶向负调控PSMD12抑制乳腺癌上皮间质转化 [J]. 现代肿瘤医学,2021,29(17):2963-2970.
[28]WANG Q,WANG G W,NIU L J,et al. Exosomal MiR-1290 promotes angiogenesis of hepatocellular carcinoma via targeting SMEK1 [J]. Journal of oncology,2021,2021:6617700.
[29]HUANG J Y,SHEN M,YAN M Z H,et al. Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1 [J]. Acta biochimica et biophysica Sinica,2019,51(9):900-907.
[30]YAN L,CAI K,SUN K,et al. MiR-1290 promotes proliferation,migration,and invasion of glioma cells by targeting LHX6[J]. Journal of cellular physiology,2018,233(10):6621-6629.
[31]徐楚. miR-122在丙型肝炎病毒感染导致的脂代谢紊乱中的作用机制研究 [D]. 武汉:武汉大学,2020.
[32]HOU P,WANG H,ZHAO G,et al. MiR-3470b promotes bovine ephemeral fever virus replication via directly targeting mitochondrial antiviral signaling protein(MAVS)in baby hamster Syrian kidney cells[J]. BMC microbiology,2018,18(1):224.
[33]NG W L,CHEN G,WANG M,et al. OCT4 as a target of miR-34a stimulates p63 but inhibits p53 to promote human cell transformation[J]. Cell death & disease,2014,5(1):e1024.
[34]PU Y,ZHAO F,WANG H,et al. MiR-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the DLL1 gene[J]. Scientific reports,2017,7(7):44218.
[35]GE X,GAO J,SUN Q,et al. MiRa inhibits the proliferation,migration,and invasion of oral squamous cell carcinoma by directly targeting SATB2[J]. Journal of cellular physiology,2019,235(5):4856-4864.
[36]YIN H,ZHANG S,SUN Y,et al. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy[J]. Cell death & disease,2017,8(8):e2998.
[37]YE X,XU L,LI X,et al. MiR-34 modulates wing polyphenism in planthopper[J]. PloS genetics,2019,15(6):e1008235.
[38]LIU Z,XU J,LING L,et al. MiR-34 regulates larval growth and wing morphogenesis by directly modulating ecdysone signalling and cuticle protein in Bombyx mori[J]. RNA biology,2020,17(9):1342-1351.
[39]ZHANG G B,LIU Z G,WANG J,et al. MiR-34 promotes apoptosis of lens epithelial cells in cataract rats via the TGF-β/Smads signaling pathway[J]. European review for medical and pharmacological sciences,2020,24(7):3485-3491.
[40]曹祥,韦伟,黄晓燕,等. MiR-34a靶向调控Wnt/β-catenin信号对小儿淋巴癌细胞凋亡的机制研究 [J]. 中国医学装备,2019,16(9):158-162.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(31902406)、河南农业大学青年英才项目(30500636)、财政部和农业农村部:国家现代农业产业技术项目.
通讯作者:崔亚垒,博士,讲师,研究方向:非编码RNA在宿主病毒互作中的调控机制研究. E-mail:cuiyalei423@163.com
更新日期/Last Update: 1900-01-01