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Almost-hamiltonicity Neighborhood Intersections

and Partially Square Graphs
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Let G be a graph and G the partially square graph of G.1In this paper by using the technique of the vertex inser-

tion on k+2 -connected k=2 graphs we give some sufficient conditions for graphs which are to be 1-almost-hamiltonian

or almost-hamiltonian-connected expressed by weighted sums of the neighborhood intersections in G of independent sets in G ™

where the weights are LTW-sequences.
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0 Introduction

In this paper the terminology and notations not defined will follow 5 and we consider simple finite
graphs only. G will always stand for a graph.

A cycle C in G is called a dominating cycle or D-cycle for simplicity if V- G \ V C is an inde-
pendent set of G a path P in G is called a dominating path or D-path for simplicity if V.G \ V P s
an independent set of G.A graph G is called almost-hamiltonian if every longest cycle of G is D-cycle a
graph G is called 1-almost-hamiltonian if G — v is almost-hamiltonian for any v& V G a graph G is
called almost-hamiltonian-connected if every longest u v -path of G is D-path forany v v CV G .

Let ¢t > 1 be an integer. Denote

I, G = Z:Z is an independet set of G |Z =t .

Let ZCcV G and Z| =t.Foreach i€ 0 1 2 ¢t denote

S: Z = vEV G: Nv(NZ =i ads; Z = S, Z |.

This is the concept of neighborhood intersections introduced in 8

Let G be connected and v & V G .Denote dist v Z = min dist v z

where dist v z
€7

stands for the distance between v and z
N, 7 = o€V G :dist v Z =1 i=012 and
nZ =Ny ZUN, Z UN, Z | =| v€EV G :dist v Z <2
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For k=1 a non-negative rational sequence a; a, a,.1 is called an LTW-sequence intro-
duced in 6 i.e. AS-sequence introduced in 3 if

1 a;<1 and

h h
2 for arbhitrary iy in i, € 23 E+1 Zijgk+limpliesz a -1 <1.
i i

-1

The concepts of neithborhood intersections and LTW-sequence are of basic] importance in study on
hamiltonicity of graphs.

For v€V G denote N v U v .Let uw v CV G .Set

Juv=wENuNv:NwcNulUNuv

A . Ainouche and M. Kouider introduced the following concepts in 2 . The partially square graph
G” of Gisagraphsatisfying V ¢ =V G andE ¢° =E G U wiwgk G andJ u v
0 .

11 improves the results in 2 and gives the following theorems In this paper we always assume

a, a ap.1 to be an LTW-sequence
Theorem 1" Let G be a k + 1 -connected graph with k=2 Iszﬂlaisi Z >n Z inG for
i=1
each ZEI,,;, G* then G is 1-hamiltonian.
Theorem 2 "' Let G be a k + 1 -connected graph with k>3.lsz+1: as; Z >n Z inG for
i1
each Z&EI,,, G* then G is hamiltonian-connected.

In this paper we will prove the following new results by using the vertex inserting lemmas introduced
m 7 .
k+1

Theorem 3 let G be a k +2 -connected graph with k;Z.IfZ as; Z +sp L >n Z

i=1
+k+1in Gforeach ZEI,,; G* then G is 1-almost-hamiltonian.

k+1

Theorem 4 let G be a k +2 -connected graph with k;3.lf2a[s£ Z +sp, Z >n Z

i=1
+k+1in G foreach ZEI,,; G* then G is almost-hamiltonian-connected.
For Theorems 3 and 4 we give the following conjectures
k+1

Conjecture 5 let G be a k + 1 -connected graph with £ =2.If Zaisi Z + spq Z >

i-1
n Z +k+1inGforeach ZEI,,;, G* then G is 1-almost-hamiltonian.
k+1

Conjecture 6 let G be a k + 1 -connected graph with £ =3.If Zam Z + s Z >

i=1
nZ +k+1in G foreach ZEI,,;, G* then G is almost-hamiltonian-connected.
Sometimes by a slight abuse of notation we shall use the same letter for a subgraph of G and its
vertex set provided no ambiguity arises.
Let U and R be subgraphs of G or subsets of V' G denote
N U :lngUNv and Ny U =N U (N R.
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Each cycle or path of G discussed in this paper will be assigned an orientation. A u© v -path is a
path joining u and v having orientation from u to v.Let B be a cycle or apathof G x y CcV B
when B is a path suppose that x appears no later than y denote by B x y the oriented x y -
path of B where the orientation was takenfromB B x y =B x vy — x B x y =B x y -
y and B x y =B x y — x y .The reverse oriented graph of B is denoted by B . Therefore an
oriented y x -path of B will be denoted by B y x and similarly for the others.
Let H be a connected subgraph of G. x y ¢ N H \V H denote by xHy one of the longest

x y -paths with all its internal vertices in H.

1 The vertex inserting lemmas and the other lemmas

In this section we always assume that G is a connected non-hamiltonian graph and C is a maximal
cycle of G i.e. there is no cycle C' in G suchthat V. C cV C' and H is a component of G —
V C .Assume also v; v, v, CN¢ H and vy v, v,, occur on C in the order of their in-
dices. The subscriptions of v;"s will be taken modulo m.If x& V C  denote by x* and x ~ the succes-
sor and the predecessor of x along the orientation of C respectively.

Fori€ 12 m if u€ C v; v;,; and thereis some w&€ C v;,, v; suchthat w w”*
C N u then u is called an insertible vertex ” in C with respect to C v; v;,; or simply say u is in-
sertible .

In spite of there are some slight differences between the following Lemmas 1 — 9 and the correspon-
dent Lemmas in 7 9 10 or 2 the proofs of them will be omitted since they are almost the
same .

Lemmal’ letu€C v v;,; forsome i€ 12 m . If all the vertices in C v; u are
insertible then

1 there exists @ w v; -path P such that V P =V C

2 ug N¢ H therefore there exists a vertex in C v; v;,; which is not insertible.

By lemma 1 2 for each i€ 1 2 m let x; be the first non-insertible vertex in C v; v;,; .
Lemma 2’ 1 Ifu&cNe H thenu* ¢ Ne H

2 Hu€EN % NC vy v; thenu® g N x .

Lemma3’ For i j c 12 m if y,€C v x;, y€C v x then

1 there is no y; y; -path  with all its internal vertices not in V' C

2 there is no w€ C ; v; such that yw yw* CE G .

Lemmad4’ Ifu€ No H \ v v Up, yGOIC v, x;, thenu®y ¢ E G
js
Let Xyy= %o x4 x, where xis an arbitrary vertex of H.Set X C X); such that xy& X and

X =k+l<sm+1.X\ x = =x

P N

P, X

p,  Where I<p;<py< < p,<m .The subscrip-
tions of p;" s will be taken modulo k.

Lemmas5’ X,€1,,, 6 X€I,, G .

Cycle C is said satisfying D-condition with respect to X if for any z~ € S,,; X 1 V C \
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we always have z&€ Sy X and z* € Sy X

v v

0 p, ~ We may assume z cC v U

Py 2
U oty orz*€S, X andz** €S, X U v/}, .
A segment C z; 2z, CC X Uy te 12 ks called a CX-segement if
1 C Z1 2y ﬂSO X ZQ and

2 ZIGNZ X UX 22650 X U UI:H

A CX-segment C z; z, is said to be simple if C z; z, CS; X asimple CX-segment C z;

Prii

z, is said to be D-simple if z[ € S, .1 X a simple CX-segment C z; z, is said to be ND-simple
lf Zl_ $ Sk+l X .

k+1

Let a; a, a1 be an LTW-sequence.Denote 6 X = Zais[ X + s X

i=1

Let &= | Uy, Up, Vp, NS,.1 X | and A be the number of ND-simple CX-segments on C .

Lemma 6’ ° If C satisfies D-condition with respect to X thenop X <n X +&-1-2
where £E< k.

Now we cosider Xj; and X in the partially square graph G™ of G.

Lemma7? X,€1I,,, G and therefore X€1,,, G*

Lemma 8 and § 2 will involve a graph G’ other than G.In order to distinguish the notations such as
Novo No NU Juv S 7Z s;Z N Z n Z op Z introduced for G we will sim-
ply add a prime to the notations with respect to G’ .For example N' v N v a'p Z .

Lemma 8 '°  Suppose that G’ isa graph WCV G and G=G' -W.If ZEIL, G * and
ZCV G then V.G \N¢g W (] z z =@ foreach z z; CZ. So ZEIL, G* if N'g

w NJ z z =( forany z z CZ.
Now we cosider that C satisfies D-condition with respect to X .
Lemma 97  Suppose that
i lVH >1X= Xo X X %<V H

i there exists some ¢& 1 2 k such that p,_;=p,-1 C v, , AN xy =@ there
4 q

P,
()

xpk

is a xo v, -path Q where V. Q-v, CcV H and v, v, v, \ oy, CN H-V Q-

Yq

i forz=—€8,,; X \ Vp, U,

\'z and [V C > V CI.
Then C satisfies D-condition with respect to X .

v, there is no cycle €' in G such that V. C¢" OV C

Py

2 Proofs of the theorems

Proof of theorem 3 By contradction. Suppose that there exists a w & V G such that there is a
longest cycle C in G = G — w but C is not a D-cycle. Then there is some component H of R =G -V
C suchthat |V H =2.Let N0 H = v, v, v, .Fori€ 1 2 m  choose x; the first
non-insertible vertex in C v; v;,; .Set Xy = x9 % x,, where xg is an arbitrary vertex of H.
We first prove three results.
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all Xyygl,,1 G then there is some x;€ Xy \  xy such that Xy \ % €1, G©
In fact by Lemma 7 Xy & 1,,; G~ .Thus there are x;, xy C Xy such that J x, xp #
w . Without loss of generality we may assume that x; # x.

Suppose that Xy \ x; ¢ 1, G then there is some «x; x; C Xy \ x; such that J x; x;
#0 . Also J x; xp #0.Thus J x; x;, =J x x = w .So it is easy to see that v €N x; U
N x;  contradicting Lemma 5.

b For a fixed v, € N; H there exist some xo&€ V H and v, v,,; CN¢c H \ v such
that v, €N xy and v, €N H - .

In fact since G’ is 3-comnected |V H =2 and x, is an arbitrary vertex of H it is easy to see
the result holds.

¢ there exists some X C Xy such that X€ I, ,; G* and C satisfies D-condition with respect to X.

Infact by a Xy \ x €1, G* and [2£0.By b We may choose xy x,_; x,€ X.Also

may choose Uy, Up, Up, \ U, U, C N H-xy \ Uy, since m=k + 1.Thus X =
Xo Xy Xy Xy €1I,,; G° and the conditions | and i of Lemma 9 are satisfied.Since C
is a longest cycle G’ the condition i of Lemma 9 is satisfied. Thus by Lemma 9 this result holds.

Since G' = G — w there is some ¢& 0 1 k+1 such that w&€ S, X .Then s, X =5,
X +1lands; X =s'; X foreach i€ 01 E+1 \ q .Letn X =n" X + p where p
€01 .Clearly ;=1 if ¢0.By the definition of LTW-sequence a;<?2 for each i€ 1 2 k

+1 .We obtain the following contradiction by ¢ and Lemma 6
k+1

Zais,-X + 850X =op X <=op X +2+pu<n X +bk+1l+p=nX +k+

i=1

Proof of theorem 4 By contradiction. Suppose there exists some w©; u; CV G such that there
is a longest u; u, -path in G which is not a D-path. Then there is sme component H of R= G -V
P suchthat |V H | =2.1et Npb H = v, v, v, where m=Fk +2.Add two new vertices
wy w, and three new edges uyw; w;w, u,w,to G and denote by G’ the resulting graph. Then C = P
wy, u, wiwouis a cycle in G’ . Let the orientation of C agree with that of P.Clearly C is a maximal
cycle in G' .By Lemma 1 2 set x; as the first non-insertible vertex in C v; v;,; i€ 12 m .
Let x¢ be an arbitrary vertex of V. H and Xy = xo 2, %, .We first prove three results.
a I Xy\ «x, ¢l,_1 G* .then Xyy\ x, x, €1,_1 G~
In fact by Lemma 8 there are x; and x; such that J x, xp C u; wy M uy©J x, xp then
by Lemma 2 uy €N uy \' N x, (\N x; a contradiction if u; € J % xy and x; ¢ x; xp
then by Lemma 2 uf €N u; \' N x, (\N x; a contradiction.Thus J x; x; = u; .
Suppose that Xy \ x; x, ¢ 1, G* .Then there is some x; x; C Xy \ =x; x, such that J

7

x; % =0.AlsoJ x vy #£0.Thus J x; x;, =J x x; = u; .So it is easy to see that x; € N
x; UN x;  contradicting Lemma 5.
b There exist some xo& V H and v

v,_1€EN H-x .

¢ Yg+1 CN¢ H \ vy v, suchthat v, €N x, and
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In fact since G is 4-connected | V' H =2 and x is an arbitrary vertex of H it is easy to see
that this result holds.
c there exists some X C Xj; such that X€ [, ,; G and C satisfies D-condition with respect to
X.
In fact by a we may assume that Xy \ %, x, €1,_, G° .By b We may choose x,

x,_1 x,€ X Without loss of generality we may assume that x,_; = x

1)
CN H-x \ v,

P -1

and x, = x, . Also we may
q-1 g Py

choose v, v

P, v

v vy v, since m=k+2.Thus X =

P, Py Py P

Xo X, X x, €1I,,; G° and the conditions | and | of Lemma9 are satisfied. By the
0 “p, “*p, P, k

choice of v,, us ¢ S0 X \ v, w v, .Since P is a longest wu; u, -path in G and u; =

Py TPy Py,

wy uy ¢Sk X\ U, Up, v, the condition i of Lemma 9 is satisfied by the construction

of G’ .Thus by Lemma 9 this result holds.
By the construction of ' n’ X <n X +2 and w; w, €8¢ X .Thuss;, X =5s';, X for
each i€ 12 E+1

k+1 k+1
a;s; X + Sk+1 X = ais’i X + 3/k+1 X = G,]_) X < n X + E-1

i=1 i=1

<n X +k+1.

=
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